【題目】已知橢圓:
(
)與
軸交于
,
兩點(diǎn),
為橢圓
的左焦點(diǎn),且
是邊長(zhǎng)為2的等邊三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓
交于
,
兩點(diǎn),點(diǎn)
關(guān)于
軸的對(duì)稱點(diǎn)為
(
與
不重合),則直線
與
軸交于點(diǎn)
,求
面積的取值范圍.
【答案】(Ⅰ); (Ⅱ)
.
【解析】試題分析:
(Ⅰ)由是邊長(zhǎng)為2的等邊三角形,很容易得
,從而得橢圓方程;
(Ⅱ)直線與橢圓相交問(wèn)題,設(shè)交點(diǎn)為,則有
,把直線方程與橢圓方程聯(lián)立方程組,消元后可得
,寫出直線
方程,求出
點(diǎn)坐標(biāo)為
,又直線
過(guò)定點(diǎn)
,因此
,可用
表示出來(lái),可設(shè)
換元后求得其取值范圍.
試題解析:
(Ⅰ)依題意可得,且
,
解得,
.
所以橢圓的方程是
.
(Ⅱ)由消
,得
.
設(shè),
,則
.
且,
.
經(jīng)過(guò)點(diǎn),
的直線方程為
.
令,則
.
又,
,
故當(dāng)時(shí),
.
所以
直線過(guò)定點(diǎn)
令,則
在
上單調(diào)遞減
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)M={x|0≤x≤2},N={y|0≤y≤2},給出下列四個(gè)圖形:
其中,能表示從集合M到集合N的函數(shù)關(guān)系的個(gè)數(shù)是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一批材料可以建成100m長(zhǎng)的圍墻,現(xiàn)用這些材料在一邊靠墻的地方圍成一塊封閉的矩形場(chǎng)地,中間隔成3個(gè)面積相等的小矩形(如圖),則圍成的矩形場(chǎng)地的最大總面積為(圍墻厚度忽略不計(jì))m2 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí), 求函數(shù)
在區(qū)間
上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)橢圓的左頂點(diǎn)
作斜率為2的直線,與橢圓的另一個(gè)交點(diǎn)為
,與
軸的交點(diǎn)為
,已知
.
(1)求橢圓的離心率;
(2)設(shè)動(dòng)直線與橢圓有且只有一個(gè)公共點(diǎn)
,且與直線
相交于點(diǎn)
,若
軸上存在一定點(diǎn)
,使得
,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(Ⅰ)拋物線的頂點(diǎn)在原點(diǎn),坐標(biāo)軸為對(duì)稱軸,并經(jīng)過(guò)點(diǎn),求此拋物線的方程.
(Ⅱ)已知圓: (
),把圓上的各點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)伸長(zhǎng)到原來(lái)的
倍得一橢圓.求橢圓方程,并證明橢圓離心率是與
無(wú)關(guān)的常數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),
,函數(shù)
,
.
(Ⅰ)若與
有公共點(diǎn)
,且在
點(diǎn)處切線相同,求該切線方程;
(Ⅱ)若函數(shù)有極值但無(wú)零點(diǎn),求實(shí)數(shù)
的取值范圍;
(Ⅲ)當(dāng),
時(shí),求
在區(qū)間
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè) ,向量
=(cosα,sinα),
.
(1)證明:向量 與
垂直;
(2)當(dāng)| |=|
|時(shí),求角α.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),
.
(Ⅰ)若曲線與曲線
在它們的交點(diǎn)
處具有公共切線,求
,
的值;
(Ⅱ)當(dāng)時(shí),若函數(shù)
在區(qū)間
內(nèi)恰有兩個(gè)零點(diǎn),求
的取值范圍;
(Ⅲ)當(dāng)時(shí),求函數(shù)
在區(qū)間
上的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com