A. | $1-\frac{1}{{\sqrt{101}}}$ | B. | $\frac{9}{10}$ | C. | $\frac{99}{100}$ | D. | $\frac{1}{10}-\frac{1}{{\sqrt{101}}}$ |
分析 數(shù)列{an}滿足a1=0,且2an+1=1+anan+1,可得a2=$\frac{1}{2}$,a3=$\frac{2}{3}$,a4=$\frac{3}{4}$,…,可得${a}_{n}=\frac{n-1}{n}$.于是bn=$\frac{1}{{\sqrt{n}}}-\sqrt{\frac{{{a_{n+1}}}}{n}}$=$\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}$,即可得出.
解答 解:∵數(shù)列{an}滿足a1=0,且2an+1=1+anan+1,
∴2a2=1,解得a2=$\frac{1}{2}$;
同理可得a3=$\frac{2}{3}$,a4=$\frac{3}{4}$,…,
可得${a}_{n}=\frac{n-1}{n}$.
代入2an+1=1+anan+1,滿足等式.
∴bn=$\frac{1}{{\sqrt{n}}}-\sqrt{\frac{{{a_{n+1}}}}{n}}$=$\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}$,
記Sn=b1+b2+…+bn,
則S100=$(1-\frac{1}{\sqrt{2}})$+$(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}})$+…+$(\frac{1}{\sqrt{100}}-\frac{1}{\sqrt{101}})$
=1-$\frac{1}{\sqrt{101}}$.
故選:A.
點(diǎn)評 本題考查了遞推關(guān)系的應(yīng)用、“累加求和”方法,考查了推理能力與計算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $6-\sqrt{5}$ | B. | $\sqrt{29}-6$ | C. | $6+\sqrt{5}$ | D. | $\sqrt{29}-4$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 25 | B. | 0.2 | C. | 0.25 | D. | 20 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | 1 | 2 | 3 | 6 |
y | 2 | 3 | 5 | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | α+β≥$\frac{1}{2}$ | B. | α+β≤$\frac{1}{2}$ | C. | α+β≥1 | D. | α+β≤1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | 2 | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com