如圖,在Rt△ABC中,, BE平分∠ABC交AC于點E, 點D在AB上,.
(Ⅰ)求證:AC是△BDE的外接圓的切線;
(Ⅱ)若,求EC的長.
(Ⅰ)取BD的中點O,連接OE.∠C=90°,得OE⊥AC,確定AC是△BDE的外接圓的切線.
(Ⅱ) EC=3.
解析試題分析:(Ⅰ)取BD的中點O,連接OE.
∵BE平分∠ABC,∴∠CBE=∠OBE.又∵OB=OE,∴∠OBE=∠BEO,
∴∠CBE=∠BEO,∴BC∥OE. 3分
∵∠C=90°,∴OE⊥AC,∴AC是△BDE的外接圓的切線. 5分
(Ⅱ)設(shè)⊙O的半徑為r,則在△AOE中,
,即,解得,
∴OA=2OE, ∴∠A=30°,∠AOE=60°. ∴∠CBE=∠OBE=30°.
∴EC=. 10分
考點:平面幾何選講,圓的幾何性質(zhì)。
點評:中檔題,本題作為選考內(nèi)容,難度不大,正確解題的關(guān)鍵是,充分借助于幾何圖形的特征,利用“垂直關(guān)系”解題。
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知四邊形ABCD內(nèi)接于,且AB是的直徑,過點D的的切線與BA的延長線交于點M.
(1)若MD=6,MB=12,求AB的長;
(2)若AM=AD,求∠DCB的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在直角坐標系中,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系.已知點A的極坐標為,直線的極坐標方程為,且點A在直線上。
(Ⅰ)求的值及直線的直角坐標方程;
(Ⅱ)圓C的參數(shù)方程為,試判斷直線l與圓C的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知圓外有一點,作圓的切線,為切點,過的中點,作割線,交圓于、兩點,連接并延長,交圓于點,連續(xù)交圓于點,若.
(1)求證:△∽△;
(2)求證:四邊形是平行四邊形.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖所示,PA為圓的切線,A為切點,PBC是過點O的割線,PA=10,PB=5,的平分線與BC和圓分別交于點D和E。
(1)求證:;
(2)求AD·AE的值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,A,B,C,D四點在同一圓上,AD的延長線與BC的延長線交于E點,且EC=ED.
(1)證明:CD∥AB;
(2)延長CD到F,延長DC到G,使得EF=EG,證明:A,B,G,F(xiàn)四點共圓.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com