【題目】下列命題中正確的是( )

A.p∨q為真命題,則p∧q為真命題

B.“x5”“x24x50”的充分不必要條件

C.命題x<1,則x22x3>0”的否定為:x≥1,則x22x3≤0”

D.已知命題px∈R,x2x1<0,則px∈R,x2x1≥0

【答案】B

【解析】

A中,pq為真命題時,pq都為真命題或p、q一真一假,判斷A錯誤;

B中,x5x24x50,判斷充分性成立,x24x50x5x=﹣1,判斷必要性不成立,B正確;

C中,根據(jù)命題“若pq”的否命題為“若¬p則¬q”,判斷C錯誤;

D中,根據(jù)特稱命題的否定是全稱命題,判斷D錯誤.

解:對于A,若pq為真命題,則p、q都為真命題或p、q一真一假,

pq不一定為真命題,A錯誤;

對于B,x5時,x24x5252050,充分性成立,

x24x50時,x5x=﹣1,必要性不成立,

∴“x5”是“x24x50”的充分不必要條件,B正確;

對于C,命題“若x<﹣1,則x22x30”的否命題為:

“若x≥﹣1,則x22x30”,∴C錯誤;

對于D,命題pxR,x2+x10

則¬pxR,x2+x10,∴D錯誤.

故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐中,底面ABCD是梯形,且,,,,AD的中點(diǎn)為E,則四棱錐外接球的表面積為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐ABCD中,∠ABC=∠ABD=∠CBD90°BCBDBA1,過點(diǎn)A作平面αBCBD分別交于P,Q兩點(diǎn),若AB與平面α所成的角為30°,則截面APQ面積的最小值是(

A.1B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】11”促銷活動中,某商場為了吸引顧客,搞好促銷活動,采用雙色球定折扣的方式促銷,即:在紅、黃的兩個紙箱中分別裝有大小完全相同的紅、黃球各5個,每種顏色的5個球上標(biāo)有1,23,4,55個數(shù)字,顧客結(jié)賬時,先分別從紅、黃的兩個紙箱中各取一球,按兩個球的數(shù)字之和為折扣打折,如,就按3折付款,并規(guī)定取球后不再增加商品.按此規(guī)定,顧客享有6折及以下折扣的概率是( 。

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題:x[1,1],使等式mx2x成立是真命題.

1)求實數(shù)m的取值集合M;

2)設(shè)不等式(xa[x﹣(2a]0的解集為N,若NM,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

)當(dāng)時,求函數(shù)的極值;

時,討論的單調(diào)性;

)若對任意的恒有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列的前項和為,已知.

1)令,求數(shù)列的通項公式;

2)若數(shù)列滿足:.

①求數(shù)列的通項公式;

②是否存在正整數(shù),使得成立?若存在,求出所有的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在矩形ABCD中,AB2,BC1ECD的中點(diǎn),將三角形ADE沿AE翻折到圖②的位置,使得平面AED⊥平面ABC

1)在線段BD'上確定點(diǎn)F,使得CF∥平面AED',并證明;

2)求△AED'與△BCD'所在平面構(gòu)成的銳二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A、B、C三個箱子中各裝有2個完全相同的球,每個箱子里的球,有一個球標(biāo)著號碼1,另一個球標(biāo)著號碼2.現(xiàn)從AB、C三個箱子中各摸出1個球.

)若用數(shù)組中的分別表示從A、B、C三個箱子中摸出的球的號碼,請寫出數(shù)組的所有情形,并回答一共有多少種;

)如果請您猜測摸出的這三個球的號碼之和,猜中有獎.那么猜什么數(shù)獲獎的可能性最大?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案