4.函數(shù)f(x)=|x-1|+|x-2a|.
(1)當(dāng)a=1時(shí),解不等式f(x)≤3;
(2)若不等式f(x)≥3a2對(duì)任意x∈R恒成立,求實(shí)數(shù)a的取值范圍.

分析 (1)當(dāng)a=1時(shí),原不等式等價(jià)于|x-1|+|x-2|≤3,利用數(shù)軸及絕對(duì)值的幾何意義知0≤x≤3,即可得出結(jié)論;
(2)不等式f(x)≥3a2對(duì)任意x∈R恒成立,即|2a-1|≥3a2,即可求實(shí)數(shù)a的取值范圍.

解答 解:(1)當(dāng)a=1時(shí),原不等式等價(jià)于|x-1|+|x-2|≤3,利用數(shù)軸及絕對(duì)值的幾何意義知0≤x≤3,
即不等式f(x)≤3的解集為[0,3];…(5分)

(2)∵|x-1|+|x-2a|≥|2a-1|,∴|2a-1|≥3a2,即$\left\{{\begin{array}{l}{a≥\frac{1}{2}}\\{2a-1≥3{a^2}}\end{array}}\right.$或$\left\{{\begin{array}{l}{a<\frac{1}{2}}\\{1-2a≥3{a^2}}\end{array}}\right.$,解得$-1≤a≤\frac{1}{3}$,
所以a的取值范圍是$[-1,\frac{1}{3}]$.…(10分)

點(diǎn)評(píng) 本題考查不等式的解法,考查恒成立問題,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知圓C:x2+y2+2x-4y+1=0的圓心在直線ax-by+1=0上,則ab的取值范圍是(  )
A.(-∞,$\frac{1}{4}$]B.(-∞,$\frac{1}{8}$]C.(0,$\frac{1}{4}$]D.(0,$\frac{1}{8}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知定義在R上的奇函數(shù)f(x)=1-$\frac{a}{{2}^{x}+1}$,若0<x≤1,都有k×f(x)≥2x-1成立,則k的取值范圍是[3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=sin($\frac{π}{3}$+4x)+cos(4x-$\frac{π}{6}$)
(1)求f(x)的最小正周期;
(2)求f(x)的單調(diào)區(qū)間;
(3)當(dāng)x∈[0,$\frac{π}{4}$]時(shí),求f(x)的最大值、最小值,及其取得最值時(shí)自變量的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知定義在[0,+∞)上的函數(shù)f(x)滿足f(x+1)=2f(x),當(dāng)x∈[0,1)時(shí),f(x)=-x2+x,設(shè)f(x)在[n-1,n)上的最大值為${a_n}({n∈{N^*}})$,則a4=(  )
A.2B.1C.$\frac{1}{16}$D.$\frac{1}{32}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若函數(shù)f(x)為偶函數(shù),且在[0,+∞)上是增函數(shù),又f(-3)=0,則不等式(x-2)f(x)<0的解集為(  )
A.(-2,3)B.(-3,-2)∪(3,+∞)C.(-3,3)D.(-∞,-3)∪(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.一個(gè)扇形的弧長與面積都是3,這個(gè)扇形中心角的弧度數(shù)是( 。
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.方程sin4x=sin2x在$(0,\frac{3}{2}π)$上的解集是$\left\{{\frac{π}{6},\frac{π}{2},π,\frac{5π}{6},\frac{7π}{6}}\right\}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知2bsin2A=3asinB,且c=2b,則$\frac{a}$等于( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{3}}{3}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案