A. | 12 | B. | 16 | C. | 20 | D. | 25 |
分析 通過“1”的代換,化簡所求表達(dá)式,利用基本不等式求出它的最小值.
解答 解:∵a>0,b>0,且滿足a+b=1,
則$\frac{1}{a}+\frac{9}$=$(\frac{1}{a}+\frac{9})(a+b)$=10+$\frac{a}+\frac{9a}$≥10+2$\sqrt{\frac{a}•\frac{9a}}$=16,
當(dāng)且僅當(dāng)$\frac{a}=\frac{9a}$,即a=$\frac{1}{4}$,$b=\frac{1}{2}$時(shí),等號成立.
故$\frac{1}{a}+\frac{9}$的最小值為16,
故選:B.
點(diǎn)評 本題主要考查基本不等式的應(yīng)用,注意基本不等式的使用條件,并注意檢驗(yàn)等號成立的條件,式子的變形是解題的關(guān)鍵,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$) | B. | (-$\frac{\sqrt{3}}{2}$,-$\frac{1}{2}$) | C. | (-$\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$) | D. | (-$\frac{\sqrt{3}}{2}$,$\frac{1}{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(3)<f(6) | B. | f(3)<f(5) | C. | f(2)<f(3) | D. | f(2)<f(5) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=at | B. | y=logat | C. | y=at3 | D. | y=a$\sqrt{t}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com