(10分) 如圖所示,已知兩點(diǎn)的距離為海里,的北偏東處,甲船自海里/小時(shí)的速度向航行,同時(shí)乙船自海里/小時(shí)的速度沿方位角方向航行。問航行幾小時(shí)兩船之間的距離最短?

解:如圖,由已知可得。

設(shè)小時(shí)后兩船之間的距離最短,此時(shí)甲船到達(dá)點(diǎn),乙船到達(dá)點(diǎn)
,,
由余弦定理


當(dāng)時(shí)最小,最小
所以航行小時(shí)時(shí)兩船這間距離最近。

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,已知,
(I)求c及△ABC的面積S;
(II)求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(14分)敘述并證明余弦定理.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
已知點(diǎn)A(3,0),B(0,3),C(,),
(1)若,求角的值;
(2)若=-1,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

三、解答題:(本大題共6小題,共75分,解答應(yīng)寫出文字說明、證明過程或演算步驟.)
16. (本小題滿分12分)
已知向量,定義函數(shù)
(Ⅰ)求函數(shù)最小正周期;
(Ⅱ)在△ABC中,角A為銳角,且,求邊AC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

中,角的對(duì)邊分別為,且
(1)求角的大。
(2)若,求的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)的圖象過坐標(biāo)原點(diǎn)O,且在點(diǎn)處的切線的斜率是.
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)求在區(qū)間上的最大值;
(Ⅲ)對(duì)任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

港口北偏東方向的處有一檢查站,港口正東方向的處有一輪船,距離檢查站為31海里,該輪船從處沿正西方向航行20海里后到達(dá)處觀測(cè)站,已知觀測(cè)站與檢查站距離21海里,問此時(shí)輪船離港口還有多遠(yuǎn)?

C

 
              

B

 
A
 
D
 

    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題


查看答案和解析>>

同步練習(xí)冊(cè)答案