年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2010年高考試題分項(xiàng)版理科數(shù)學(xué)之專題十六算法初步 題型:解答題
(16分)在平面直角坐標(biāo)系中,如圖,已知橢圓的左右頂點(diǎn)為A,B,右頂點(diǎn)為F,設(shè)過點(diǎn)T()的直線TA,TB與橢圓分別交于點(diǎn)M,,其中m>0,
①設(shè)動點(diǎn)P滿足,求點(diǎn)P的軌跡
②設(shè),求點(diǎn)T的坐標(biāo)
③設(shè),求證:直線MN必過x軸上的一定點(diǎn)
(其坐標(biāo)與m無關(guān))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年高考試題分項(xiàng)版理科數(shù)學(xué)之專題十一概率統(tǒng)計(jì) 題型:解答題
(16分)在平面直角坐標(biāo)系中,如圖,已知橢圓的左右頂點(diǎn)為A,B,右頂點(diǎn)為F,設(shè)過點(diǎn)T()的直線TA,TB與橢圓分別交于點(diǎn)M,,其中m>0,
①設(shè)動點(diǎn)P滿足,求點(diǎn)P的軌跡
②設(shè),求點(diǎn)T的坐標(biāo)
③設(shè),求證:直線MN必過x軸上的一定點(diǎn)
(其坐標(biāo)與m無關(guān))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年高考試題分項(xiàng)版理科數(shù)學(xué)之專題八圓錐曲線 題型:解答題
(16分)在平面直角坐標(biāo)系中,如圖,已知橢圓的左右頂點(diǎn)為A,B,右頂點(diǎn)為F,設(shè)過點(diǎn)T()的直線TA,TB與橢圓分別交于點(diǎn)M,,其中m>0,
①設(shè)動點(diǎn)P滿足,求點(diǎn)P的軌跡
②設(shè),求點(diǎn)T的坐標(biāo)
③設(shè),求證:直線MN必過x軸上的一定點(diǎn)
(其坐標(biāo)與m無關(guān))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年高考試題分項(xiàng)版理科數(shù)學(xué)之專題五平面向量 題型:解答題
(16分)在平面直角坐標(biāo)系中,如圖,已知橢圓的左右頂點(diǎn)為A,B,右頂點(diǎn)為F,設(shè)過點(diǎn)T()的直線TA,TB與橢圓分別交于點(diǎn)M,,其中m>0,
①設(shè)動點(diǎn)P滿足,求點(diǎn)P的軌跡
②設(shè),求點(diǎn)T的坐標(biāo)
③設(shè),求證:直線MN必過x軸上的一定點(diǎn)
(其坐標(biāo)與m無關(guān))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年高考試題分項(xiàng)版理科數(shù)學(xué)之專題三數(shù)列 題型:解答題
(16分)在平面直角坐標(biāo)系中,如圖,已知橢圓的左右頂點(diǎn)為A,B,右頂點(diǎn)為F,設(shè)過點(diǎn)T()的直線TA,TB與橢圓分別交于點(diǎn)M,,其中m>0,
①設(shè)動點(diǎn)P滿足,求點(diǎn)P的軌跡
②設(shè),求點(diǎn)T的坐標(biāo)
③設(shè),求證:直線MN必過x軸上的一定點(diǎn)
(其坐標(biāo)與m無關(guān))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com