12.下列函數(shù)中為偶函數(shù)且在 (0,+∞)上是增函數(shù)的是( 。
A.y=x2+2xB.y=-x3C.y=|lnx|D.y=2|x|

分析 容易看出二次函數(shù)y=x2+2x不關(guān)于y軸對(duì)稱,從而該函數(shù)不是偶函數(shù),而顯然選項(xiàng)B的函數(shù)為奇函數(shù),而函數(shù)y=|lnx|的定義域?yàn)椋?,+∞),從而該函數(shù)不是偶函數(shù),而容易判斷D正確.

解答 解:A.y=x2+2x的對(duì)稱軸為x=-1,即該函數(shù)不關(guān)于y軸對(duì)稱,∴不是偶函數(shù);
B.y=-x3為奇函數(shù);
C.y=|lnx|的定義域?yàn)椋?,+∞),不關(guān)于原點(diǎn)對(duì)稱,∴該函數(shù)非奇非偶;
D.y=2|x|為偶函數(shù),x>0時(shí),y=2x為增函數(shù),∴該選項(xiàng)正確.
故選:D.

點(diǎn)評(píng) 考查二次函數(shù)的對(duì)稱軸,奇函數(shù)、偶函數(shù)的定義,偶函數(shù)圖象的對(duì)稱性,以及定義域的對(duì)稱性.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.向量$\overrightarrow m=(\frac{{\sqrt{2}}}{2},-\frac{{\sqrt{2}}}{2})$,$\overrightarrow n=(sinx,cosx),x∈(0,π)$,①若$\overrightarrow m∥\overrightarrow n$,則tanx=-1;②若$\overrightarrow m$與$\overrightarrow n$的夾角為$\frac{π}{3}$,則x=$\frac{5π}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.?dāng)?shù)列{an}的前n項(xiàng)和${S_n}={2^n}+3$,則其通項(xiàng)公式an=$\left\{\begin{array}{l}{5,}&{n=1}\\{{2}^{n-1},}&{n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)函數(shù)f(x)=$\left\{{\begin{array}{l}{{x^2}-4x+2,x≥0}\\{x+5,x<0}\end{array}}\right.$,則f(-1)+f(1)=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知正方體ABCD-A1B1C1D1,下列結(jié)論中正確的是①②④(只填序號(hào)).
①AD1∥BC1;  ②平面AB1D1∥平面BDC1; ③AD1∥DC1;   ④AD1∥平面BDC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積是$\frac{20}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.定義在R上的奇函數(shù)f(x),對(duì)于?x∈R,都有$f({\frac{3}{4}+x})=f({\frac{3}{4}-x})$,且滿足f(4)>-2,$f(2)=m-\frac{3}{m}$,則實(shí)數(shù)m的取值范圍是{m|m<-1或0<m<3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知△ABC中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分別為AC,AD上的動(dòng)點(diǎn),且AE:AC=AF:AD=k,k∈(0,1).
(1)求證:不論k為何值,總有平面BEF⊥平面ABC;
(2)當(dāng)k為何值時(shí).平面BEF⊥平面ACD;
(3)在(2)的條件下三棱錐A-BEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知a+$\frac{1}{a}$=3,則a${\;}^{\frac{1}{2}}$+a${\;}^{-\frac{1}{2}}$等于( 。
A.2B.$\sqrt{5}$C.-$\sqrt{5}$D.$±\sqrt{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案