【題目】已知函數(shù)(k為常數(shù),e為自然對數(shù)的底數(shù)),曲線在點(1, f (1))處的切線與x軸平行.
(1)求k的值;
(2)求的單調區(qū)間;
(3)設其中為的導函數(shù),證明:對任意
【答案】(1);(2) 在區(qū)間內為增函數(shù);在內為減函數(shù);(3)見解析.
【解析】分析:(1)由導數(shù)的幾何意義得,即可得解;
(2)求導,導數(shù)大于0可得增區(qū)間,導數(shù)小于0可得減區(qū)間;
(3)由,當,分析單調性易證得成立;當,分析不等式,只需證即可,設,求導求最值即可證得,,從而得證.
詳解:(1)由f(x) = 可得,而,
即,解得;
(2),令可得,
當時,;
當時,。
于是在區(qū)間內為增函數(shù);在內為減函數(shù).
(3),
當時, ,.
當時,要證.
只需證即可
設函數(shù).
則,
則當時,
令解得,
當時;當時,
則當時,且,
則,于是可知當時成立
綜合(1)(2)可知對任意x>0,恒成立.
【另證1】設函數(shù),則,
則當時,
于是當時,要證,
只需證即可,
設,,
令解得,
當時;當時,
則當時,
于是可知當時成立
綜合(1)(2)可知對任意x>0,恒成立.
【另證2】根據(jù)重要不等式當時,即,(要證明)
于是不等式,
設,,
令解得,
當時;當時,
則當時,
于是可知當時成立.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,圓的方程為(為參數(shù)).以坐標原點為極點,軸的正半軸為極軸,建立極坐標系,兩種坐標系中取相同的單位長度,直線的極坐標方程為
(1)當時,判斷直線與圓的關系;
(2)當上有且只有一點到直線的距離等于時,求上到直線距離為的點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】據(jù)市場調查發(fā)現(xiàn),某種產品在投放市場的30天中,其銷售價格(元)和時間(天)的關系如圖所示.
(1)求銷售價格(元)和時間(天)的函數(shù)關系式;
(2)若日銷售量(件)與時間(天)的函數(shù)關系式是 ,問該產品投放市場第幾天時,日銷售額(元)最高,且最高為多少元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=mlnx+(m﹣1)x.
(1)若f(x)存在最大值M,且M>0,求m的取值范圍.
(2)當m=1時,試問方程xf(x)﹣ =﹣ 是否有實數(shù)根,若有,求出所有實數(shù)根;若沒有,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,點A在x軸上,點B的坐標為(1,0).且點C與點D在函數(shù)f(x)= 的圖象上.若在矩形ABCD內隨機取一點,則該點取自空白部分的概率等于( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)對任意的實數(shù)都有:,且當時,有.
(1)求.
(2)求證:在上為增函數(shù).
(3)若,且關于的不等式對任意的恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x+a|+|x﹣2|
(1)當a=﹣3時,求不等式f(x)≥3的解集;
(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知中心均在原點的橢圓與雙曲線有公共焦點,且左、右焦點分別為F1、F2 , 這兩條曲線在第一象限的交點為P,△PF1F2是以PF1為底邊的等腰三角形.若|PF1|=10,橢圓與雙曲線的離心率分別為e1、e2 , 則e1e2的取值范圍為( )
A.
B.
C.(2,+∞)
D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com