已知f(x)=若f(x)=3,則x=________.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:志鴻系列訓(xùn)練必修一數(shù)學(xué)北師版 題型:022

已知f(x)=若f(x)=10,則x=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:導(dǎo)學(xué)大課堂必修一數(shù)學(xué)蘇教版 蘇教版 題型:044

(1)已知函數(shù)f(x)=3x2+1,若f(x)的值域是(2,4),求f(x)的定義域的一個(gè)可能范圍.

(2)已知函數(shù)f(x)=,f(1)+f(2)+f()+f(3)+f()+f(4)+f()=________.

(3)若函數(shù)f(x)滿足對(duì)a、b∈R,有f(ab)=f(a)+f(b),且f(2)=p,f(3)=q,求f(72).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:浙江省東陽(yáng)中學(xué)高三10月階段性考試數(shù)學(xué)理科試題 題型:044

已知f(x)=(2cos+2sin)·cos

(Ⅰ)f()的值

(Ⅱ)ABC,A、B、C所對(duì)的邊分別為a、bcf(C)=+,b2=ac,sinA的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年河北省高三8月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.

(1)求f(x)的解析式;

(2)若過(guò)點(diǎn)A(2,m)可作曲線y=f(x)的三條切線,求實(shí)數(shù)m的取值范圍.

【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。第一問(wèn),利用函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x

(2)中設(shè)切點(diǎn)為(x0,x03-3x0),因?yàn)檫^(guò)點(diǎn)A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數(shù)∴m=-2x03+6x02-6

然后利用g(x)=-2x3+6x2-6函數(shù)求導(dǎo)數(shù),判定單調(diào)性,從而得到要是有三解,則需要滿足-6<m<2

解:(1)f′(x)=3ax2+2bx+c

依題意

又f′(0)=-3

∴c=-3 ∴a=1 ∴f(x)=x3-3x

(2)設(shè)切點(diǎn)為(x0,x03-3x0),

∵f′(x)=3x2-3,∴f′(x0)=3x02-3

∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)

又切線過(guò)點(diǎn)A(2,m)

∴m-(x03-3x0)=(3x02-3)(2-x0)

∴m=-2x03+6x02-6

令g(x)=-2x3+6x2-6

則g′(x)=-6x2+12x=-6x(x-2)

由g′(x)=0得x=0或x=2

∴g(x)在(-∞,0)單調(diào)遞減,(0,2)單調(diào)遞增,(2,+∞)單調(diào)遞減.

∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2

畫出草圖知,當(dāng)-6<m<2時(shí),m=-2x3+6x2-6有三解,

所以m的取值范圍是(-6,2).

 

查看答案和解析>>

同步練習(xí)冊(cè)答案