【題目】如圖所示的莖葉圖(圖一)為高三某班50名學(xué)生的化學(xué)考試成績(jī),圖(二)的算法框圖中輸入的ai為莖葉圖中的學(xué)生成績(jī),則輸出的m,n分別是(
A.m=38,n=12
B.m=26,n=12
C.m=12,n=12
D.m=24,n=10

【答案】B
【解析】解:由程序框圖知:算法的功能是計(jì)算學(xué)生在50名學(xué)生的化學(xué)考試成績(jī)中,成績(jī)大于等于80的人數(shù),和成績(jī)小于80且大于等于60的人數(shù), 由莖葉圖得,在50名學(xué)生的成績(jī)中,成績(jī)大于等于80的人數(shù)有80,80,81,84,84,85,86,89,90,91,96,98,共12人,故n=12,
由莖葉圖得,在50名學(xué)生的成績(jī)中,成績(jī)小于60的人數(shù)有43,46,47,48,50,51,52,53,53,56,58,59,共12人,
則在50名學(xué)生的成績(jī)中,成績(jī)小于80且大于等于60的人數(shù)有50﹣12﹣12=26,故m=26
故選:B.
【考點(diǎn)精析】本題主要考查了莖葉圖和算法的循環(huán)結(jié)構(gòu)的相關(guān)知識(shí)點(diǎn),需要掌握莖葉圖又稱“枝葉圖”,它的思路是將數(shù)組中的數(shù)按位數(shù)進(jìn)行比較,將數(shù)的大小基本不變或變化不大的位作為一個(gè)主干(莖),將變化大的位的數(shù)作為分枝(葉),列在主干的后面,這樣就可以清楚地看到每個(gè)主干后面的幾個(gè)數(shù),每個(gè)數(shù)具體是多少;在一些算法中,經(jīng)常會(huì)出現(xiàn)從某處開始,按照一定條件,反復(fù)執(zhí)行某一處理步驟的情況,這就是循環(huán)結(jié)構(gòu),循環(huán)結(jié)構(gòu)可細(xì)分為兩類:當(dāng)型循環(huán)結(jié)構(gòu)和直到型循環(huán)結(jié)構(gòu)才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=sinxcosx﹣sin2(x﹣ ). (Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)求函數(shù)f(x﹣ )在[0, ]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 且S6=5S2+18,a3n=3an , 數(shù)列{bn}滿足b1b2…bn=4Sn . (Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)令cn=log2bn , 且數(shù)列 的前n項(xiàng)和為Tn , 求T2016

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線C1 ( t 為參數(shù)),曲線C2 (r>0,θ為參數(shù)).
(1)當(dāng)r=1時(shí),求C 1 與C2的交點(diǎn)坐標(biāo);
(2)點(diǎn)P 為曲線 C2上一動(dòng)點(diǎn),當(dāng)r= 時(shí),求點(diǎn)P 到直線C1距離最大時(shí)點(diǎn)P 的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè){an}是等差數(shù)列,{bn}是各項(xiàng)都為正數(shù)的等比數(shù)列,且a1=b1=1,a3+b5=21,a5+b3=13. (Ⅰ)求{an}、{bn}的通項(xiàng)公式;
(Ⅱ)求數(shù)列 的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)Sn為各項(xiàng)不相等的等差數(shù)列an的前n 項(xiàng)和,已知a3a8=3a11 , S3=9.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn= ,數(shù)列{bn}的前n 項(xiàng)和為Tn , 求 的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的程序框圖輸出的結(jié)果是S=720,則判斷框內(nèi)應(yīng)填的條件是(
A.i≤7
B.i>7
C.i≤9
D.i>9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的離心率為 ,以原點(diǎn)O為圓心,橢圓C的長半軸為半徑的圓與直線2x﹣ y+6=0相切.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)A,B為動(dòng)直線y=k(x﹣2)(k≠0)與橢圓C的兩個(gè)交點(diǎn),問:在x軸上是否存在點(diǎn)E,使 2+ 為定值?若存在,試求出點(diǎn)E的坐標(biāo)和定值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的離心率為 ,四個(gè)頂點(diǎn)構(gòu)成的菱形的面積是4,圓M:(x+1)2+y2=r2(0<r<1).過橢圓C的上頂點(diǎn)A作圓M的兩條切線分別與橢圓C相交于B,D兩點(diǎn)(不同于點(diǎn)A),直線AB,AD的斜率分別為k1 , k2
(1)求橢圓C的方程;
(2)當(dāng)r變化時(shí),①求k1k2的值;②試問直線BD是否過某個(gè)定點(diǎn)?若是,求出該定點(diǎn);若不是,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案