在△ABC中,tanA是以為第3項,4為第7項的等差數(shù)列的公差;tanB是以為第3

項,9為第6項的等比數(shù)列的公比,則該三角形為 (   )

A.等腰三角形                           B.銳角三角形

C.直角三角形                           D.鈍角三角形

 

【答案】

B

【解析】

試題分析:易知tanA=,所以B為銳角;因為tan3B=,所以B為銳角,又,所以C為銳角。所以該三角形為銳角三角形。

考點:等差數(shù)列的性質;等比數(shù)列的性質;和差公式。

點評:等比數(shù)列中所有的奇數(shù)項一定同號,所有的偶數(shù)項一定同號,注意應用這一條排除增根。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,cosA=
45
,tanB=2.求tan(2A+2B)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知α為銳角,且tanα=
2
-1
,函數(shù)f(x)=2xtan2α+sin(2α+
π
4
)
,數(shù)列{an}的首項a1=1,an+1=f(an).
(1)求函數(shù)f(x)的表達式;
(2)在△ABC中,若∠A=2α,∠C=
π
3
,BC=2,求△ABC的面積
(3)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知如下幾個式子:
(1)
1+sin2θ+cos2θ
1+sin2θ-cos2θ
=tanθ
;  
(2)tan(
x
2
+
π
4
)+tan(
x
2
-
π
4
)=2tanx

(3)
1
sin10°
-
3
cos10°
=4
;       
(4)在△ABC中,c(acosB-bcosA)=a2-b2
上述式子成立的是
(2)(3)(4)
(2)(3)(4)
.(請?zhí)顚懶蛱枺?/div>

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題正確的是
(1)(3)
(1)(3)
(只須填寫命題的序號即可)
(1)函數(shù)y=
π
2
-arccosx
是奇函數(shù);
(2)在△ABC中,A+B<
π
2
是sinA<cosB的充要條件;
(3)當α∈(0,π)時,cosα+sinα=m(0<m<1),則α一定是鈍角,且|tanα|>1;
(4)要得到函數(shù)y=cos(
x
2
-
π
4
)的圖象,只需將y=sin
x
2
的圖象向左平移
π
2
個單位.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知|BC|=4,BC的中點在坐標原點,點B的坐標是(-2,0),AB⊥AC,
(1)求動點A的軌跡方程;
(2)若直線l:mx-y+2m-2=0與點A的軌跡恰有一個公共點,求m的值;
(3)若(2)中m的值是函數(shù) f(x)=x2+sinα•x+n的零點,求tan(
2
-α)
的值.

查看答案和解析>>

同步練習冊答案