【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為,它在點(diǎn)處的切線為直線l.

(1)求直線l的直角坐標(biāo)方程;

(2)設(shè)直線l的交點(diǎn)為P1,P2,求過(guò)線段P1P2的中點(diǎn)且與l垂直的直線的極坐標(biāo)方程.

【答案】(1);(2)

【解析】

(1)先將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,再由導(dǎo)數(shù)的幾何意義得到切線的斜率,根據(jù)點(diǎn)斜式得到切線方程;(2)聯(lián)立直線和橢圓得到兩點(diǎn)坐標(biāo),再由中點(diǎn)坐標(biāo)公式得到中點(diǎn)坐標(biāo)直線斜率為k進(jìn)而得到直線方程.

1∵曲線的極坐標(biāo)方程為,

,∴曲線的直角坐標(biāo)方程為,又的直角坐標(biāo)為(2,2),

,.

∴曲線在點(diǎn)(2,2)處的切線方程為

即直線的直角坐標(biāo)方程為.

(2)

妨設(shè)P1(1,0),P2(0,-2),則線段P1P2的中點(diǎn)坐標(biāo)

所求直線斜率為k

于是所求直線方程為y+1

化為極坐標(biāo)方程,并整理得 2ρcos θ+4ρsin θ=-3, ρ

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)f(x)同時(shí)滿(mǎn)足以下三個(gè)性質(zhì);①f(x)的最小正周期為π;②對(duì)任意的x∈R,都有f(x﹣ )=f(﹣x);③f(x)在( )上是減函數(shù).則f(x)的解析式可能是(
A.f(x)=cos(x+
B.f(x)=sin2x﹣cos2x
C.f(x)=sinxcosx
D.f(x)=sin2x+cos2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知三棱錐P﹣ABC,PA⊥平面ABC,∠ACB=90°,∠BAC=60°,PA=AC,M為PB的中點(diǎn).

(Ⅰ)求證:PC⊥BC.
(Ⅱ)求二面角M﹣AC﹣B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知橢圓)的離心率為,以該橢圓上的點(diǎn)和橢圓的左、右焦點(diǎn),為頂點(diǎn)的三角形的周長(zhǎng)為,一等軸雙曲線的頂點(diǎn)是該橢圓的焦點(diǎn),設(shè)為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線與橢圓的交點(diǎn)分別為、、

(1)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;

(2)設(shè)直線、的斜率分別為、,證明為定值;

(3)是否存在常數(shù),使得恒成立?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線經(jīng)過(guò)直線的交點(diǎn).

(1)點(diǎn)到直線的距離為3,求直線的方程;

(2)求點(diǎn)到直線的距離的最大值,并求距離最大時(shí)的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體ABCDEF中,四邊形ABCD為邊長(zhǎng)為4的正方形,M是BC的中點(diǎn),EF∥平面ABCD,且EF=2,AE=DE=BF=CF=
(1)求證:ME⊥平面ADE;
(2)求二面角B﹣AE﹣D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著南寧三中集團(tuán)化發(fā)展,南寧三中青三校區(qū)2018年被清華北大錄取23人,廣西領(lǐng)先,一本率連年攀升,南寧三中青山校區(qū)2014年至2018年一本率如下表:

年份

2014

2015

2016

2017

2018

時(shí)間代號(hào)

1

2

3

4

5

一本率

0.7152

0.7605

0.7760

0.8517

0.9015

(1)關(guān)于的回歸方程 (精確到0.0001);

(2)用所求回歸方程預(yù)測(cè)南寧三中青山校區(qū)2019年高考一本錄取率.(精確到0.0001).

附:回歸方程

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】右圖是一個(gè)幾何體的平面展開(kāi)圖,其中ABCD

正方形, EF分別為PA、PD的中點(diǎn),在此幾何體中,

給出下面四個(gè)結(jié)論:

直線BE與直線CF異面;直線BE與直線AF異面;

直線EF//平面PBC平面BCE平面PAD.

其中正確結(jié)論的個(gè)數(shù)是

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三角形ABC和梯形ACEF所在的平面互相垂直,AB⊥BC,AF⊥AC,AF 2CE,G是線段BF上一點(diǎn),AB=AF=BC.
(Ⅰ)若EG∥平面ABC,求 的值;
(Ⅱ)求二面角A﹣BF﹣E的大小的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案