【題目】是否存在一個(gè)等比數(shù)列{an}同時(shí)滿足下列三個(gè)條件:①a1+a6=11且a3a4= ;②an+1>an(n∈N*);③至少存在一個(gè)m(m∈N*且m>4),使得 am1 , am2 , am+1+ 依次構(gòu)成等差數(shù)列?若存在,求出通項(xiàng)公式;若不存在,說明理由.

【答案】解:假設(shè)存在等比數(shù)列{an}同時(shí)滿足三個(gè)條件, 由①可得 ,
由②可知數(shù)列{an}是遞增的,則a6>a1
解上面方程組得
設(shè)等比數(shù)列的公比q,則 ,q=2.
此時(shí)
由③可知

解得m=3,與已知m>4矛盾.
故這樣的數(shù)列{an}不存在
【解析】假設(shè)存在等比數(shù)列{an}同時(shí)滿足三個(gè)條件,由①②結(jié)合等比數(shù)列的性質(zhì)求得a1、a6的值,從而求出等比數(shù)列的公比,得到等比數(shù)列的通項(xiàng)公式,結(jié)合 am1 , am2 , am+1+ 成等差數(shù)列求出m的值為3,與m>4矛盾,說明假設(shè)錯(cuò)誤.
【考點(diǎn)精析】關(guān)于本題考查的等差數(shù)列的性質(zhì),需要了解在等差數(shù)列{an}中,從第2項(xiàng)起,每一項(xiàng)是它相鄰二項(xiàng)的等差中項(xiàng);相隔等距離的項(xiàng)組成的數(shù)列是等差數(shù)列才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C ab>0)的焦距為,且橢圓C過點(diǎn)A1, ),

(Ⅰ)求橢圓C的方程;

(Ⅱ)若O是坐標(biāo)原點(diǎn),不經(jīng)過原點(diǎn)的直線L:y=kx+m與橢圓交于兩不同點(diǎn)P(x1,y1),Q(x2,y2),且y1y2=k2x1x2,求直線L的斜率k;

(Ⅲ)在(Ⅱ)的條件下,求△OPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(14分)一根直木棍長(zhǎng)為6m,現(xiàn)將其鋸為2段.

(1)若兩段木棍的長(zhǎng)度均為正整數(shù),求恰有一段長(zhǎng)度為2m的概率;

(2)求鋸成的兩段木棍的長(zhǎng)度均大于2m的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知2acosB=2c﹣b,若O是△ABC外接圓的圓心,且 ,則m=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是等差數(shù)列,是等比數(shù)列,且,則下列結(jié)論正確的是( )

A. B.

C. D. ,使得

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分圖象如圖所示,若將f(x)的圖象上所有點(diǎn)向右平移 個(gè)單位得到函數(shù)g(x)的圖象,則函數(shù)g(x)的單調(diào)增區(qū)間為(
A. ,k∈Z
B. ,k∈Z
C. ,k∈Z
D. ,k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 的單調(diào)遞減區(qū)間為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知梯形ABCD是直角梯形,按照斜二測(cè)畫法畫出它的直觀圖A′B′C′D′(如圖所示),其中A′D′=2,B′C′=4,A′B′=1,則直角梯形DC邊的長(zhǎng)度是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A1,∠A2,…,∠An為凸多邊形的內(nèi)角,lg sin A1+lg sin A2++lg sin An=0,則這個(gè)多邊形是(  )

A. 正六邊形 B. 梯形

C. 矩形 D. 含銳角的菱形

查看答案和解析>>

同步練習(xí)冊(cè)答案