17.已知集合$A=\{y|y=\sqrt{x}\}$,B={x|y=ln(1-x)},則A∩B=( 。
A.{x|0≤x<e}B.{x|0≤x<1}C.{x|1≤x<e}D.{x|x≥0}

分析 先分別求出集合A,B,由此利用交集定義能求出A∩B.

解答 解:∵集合$A=\{y|y=\sqrt{x}\}$={y|y≥0},
B={x|y=ln(1-x)}={x|x<1},
∴A∩B={x|0≤x<1}.
故選:B.

點(diǎn)評(píng) 本題考查交集合的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意交集定義的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.函數(shù)$f(x)=\left\{\begin{array}{l}0,(x>0)\\ π,(x=0)\\ 1,(x<0)\end{array}\right.$,則f(f(f(π)))=(  )
A.1B.0C.πD.π+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知集合P={y|y=($\frac{1}{2}$)x,x>0},Q={x|y=lg(2x-x2)},則∁RP∩Q=( 。
A.[1,2)B.(1,+∞)C.[2,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,滿足${a_{n+1}}=2\sqrt{S_n}+1$,(n∈N*),且a1=1
(I)求an;
(II)設(shè)數(shù)列$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$前n項(xiàng)和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知單位圓內(nèi)有一封閉圖形,現(xiàn)向單位圓內(nèi)隨機(jī)撒N顆黃豆,恰有n顆落在該封閉圖形內(nèi),則該封閉圖形的面積估計(jì)值為$\frac{nπ}{N}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.函數(shù)$f(x)=lgx-\frac{11}{x}$的零點(diǎn)所在區(qū)間為(  )
A.(8,9)B.(9,10)C.(10,11)D.(11,12)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.(Ⅰ)解方程tan(x-$\frac{π}{6}$)=$\sqrt{3}$;
(Ⅱ)求函數(shù)$f(x)=lg(25-{x^2})+\sqrt{sinx-\frac{1}{2}}$的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知函數(shù)$t=-144×lg(1-\frac{N}{100})$的圖象表示打字練習(xí)的“學(xué)習(xí)曲線”,其中N表示打字速度(字/min),t(h)表示達(dá)到打字水平N(字/min)所需要的學(xué)習(xí)時(shí)間.依此學(xué)習(xí)規(guī)律要想達(dá)到90字/min的打字速度,所需的學(xué)習(xí)時(shí)間為144小時(shí).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.如圖,在熱氣球C正前方有一高為m的建筑物AB,在建筑物底部A測(cè)得C的仰角為60°,同時(shí)在C處測(cè)得建筑物頂部B的仰角為30°,則此時(shí)熱氣球的高度CD為( 。
A.$\sqrt{2}m$B.$\sqrt{3}m$C.$\frac{{3\sqrt{3}}}{2}m$D.$\frac{3}{2}m$

查看答案和解析>>

同步練習(xí)冊(cè)答案