設(shè)函數(shù)f(x)=x2-x-2,x∈[-5,5].若從區(qū)間[-5,5]內(nèi)隨機(jī)選取一個(gè)實(shí)數(shù)x,則所選取的實(shí)數(shù)x滿(mǎn)足f(x)≤0的概率為( )
A.0.5
B.0.4
C.0.3
D.0.2
【答案】分析:由題意知本題是一個(gè)幾何概型,概率的值對(duì)應(yīng)長(zhǎng)度之比,根據(jù)題目中所給的不等式解出解集,解集在數(shù)軸上對(duì)應(yīng)的線(xiàn)段的長(zhǎng)度之比等于要求的概率.
解答:解:由題意知本題是一個(gè)幾何概型,
概率的值對(duì)應(yīng)長(zhǎng)度之比,
由f(x)≤0,
得到x2-x-2≤0,
解得:-1≤x≤2,
∴P==0.3,
故選C.
點(diǎn)評(píng):本題主要考查了幾何概型,以及一元二次不等式的解法,概率題目的考查中,概率只是一個(gè)載體,其他內(nèi)容占的比重較大,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2+|x-2|-1,x∈R.
(1)判斷函數(shù)f(x)的奇偶性;
(2)求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2-ax+a+3,g(x)=ax-2a.若存在x0∈R,使得f(x0)<0與g(x0)<0同時(shí)成立,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2+aln(x+1),a∈R.(注:(ln(x+1))′=
1x+1
).
(1)討論f(x)的單調(diào)性.
(2)若f(x)有兩個(gè)極值點(diǎn)x1,x2,且x1<x2,求f(x2)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2-mlnx,h(x)=x2-x+a.
(1)若曲線(xiàn)y=f(x)在x=1處的切線(xiàn)為y=x,求實(shí)數(shù)m的值;
(2)當(dāng)m=2時(shí),若方程f(x)-h(x)=0在[1,3]上恰好有兩個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍;
(3)是否存在實(shí)數(shù)m,使函數(shù)f(x)和函數(shù)h(x)在公共定義域上具有相同的單調(diào)性?若存在,求出m的值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2+x+aln(x+1),其中a≠0.
(1)若a=-6,求f(x)在[0,3]上的最值;
(2)若f(x)在定義域內(nèi)既有極大值又有極小值,求實(shí)數(shù)a的取值范圍;
(3)求證:不等式ln
n+1
n
n-1
n3
(n∈N*)恒成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案