已知M、N、P為不重合的平面,a、b為不重合的直線,則a⊥M的一個(gè)充分條件是

[  ]

A.a(chǎn)⊥b,

B.M⊥N,M∩N=b,,a⊥b

C.b∥M,a⊥b

D.M⊥N,P⊥N,P∩N=a

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出以下五個(gè)結(jié)論:
(1)函數(shù)f(x)=
x-1
2x+1
的對(duì)稱中心是(-
1
2
,-
1
2
)
;
(2)若關(guān)于x的方程x-
1
x
+k=0
在x∈(0,1)沒(méi)有實(shí)數(shù)根,則k的取值范圍是k≥2;
(3)已知點(diǎn)P(a,b)與點(diǎn)Q(1,0)在直線2x-3y+1=0兩側(cè),當(dāng)a>0且a≠1,b>0時(shí),
b
a-1
的取值范圍為(-∞,-
1
3
)∪(
2
3
,+∞)
;
(4)若將函數(shù)f(x)=sin(2x-
π
3
)
的圖象向右平移?(?>0)個(gè)單位后變?yōu)榕己瘮?shù),則?的最小值是
12
;
(5)已知m,n是兩條不重合的直線,α,β是兩個(gè)不重合的平面,若m⊥α,n∥β且m⊥n,則α⊥β;其中正確的結(jié)論是:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:北京市東城區(qū)2000~2001學(xué)年度第二學(xué)期形成性測(cè)試 高一數(shù)學(xué) (五)空間兩個(gè)平面(A) 題型:013

已知M、N、P為不重合的平面,a、b為不重合的直線,則a⊥M的一個(gè)充分條件是

[  ]

A.a(chǎn)⊥b,

B.M⊥N,M∩N=b,,a⊥b

C.b∥M,a⊥b

D.M⊥N,P⊥N,P∩N=a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

給出以下五個(gè)結(jié)論:
(1)函數(shù)f(x)=
x-1
2x+1
的對(duì)稱中心是(-
1
2
,-
1
2
)

(2)若關(guān)于x的方程x-
1
x
+k=0
在x∈(0,1)沒(méi)有實(shí)數(shù)根,則k的取值范圍是k≥2;
(3)已知點(diǎn)P(a,b)與點(diǎn)Q(1,0)在直線2x-3y+1=0兩側(cè),當(dāng)a>0且a≠1,b>0時(shí),
b
a-1
的取值范圍為(-∞,-
1
3
)∪(
2
3
,+∞)

(4)若將函數(shù)f(x)=sin(2x-
π
3
)
的圖象向右平移?(?>0)個(gè)單位后變?yōu)榕己瘮?shù),則?的最小值是
12
;
(5)已知m,n是兩條不重合的直線,α,β是兩個(gè)不重合的平面,若m⊥α,nβ且m⊥n,則α⊥β;其中正確的結(jié)論是:______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年黑龍江省哈爾濱九中高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:填空題

給出以下五個(gè)結(jié)論:
(1)函數(shù)的對(duì)稱中心是;
(2)若關(guān)于x的方程在x∈(0,1)沒(méi)有實(shí)數(shù)根,則k的取值范圍是k≥2;
(3)已知點(diǎn)P(a,b)與點(diǎn)Q(1,0)在直線2x-3y+1=0兩側(cè),當(dāng)a>0且a≠1,b>0時(shí),的取值范圍為
(4)若將函數(shù)的圖象向右平移ϕ(ϕ>0)個(gè)單位后變?yōu)榕己瘮?shù),則ϕ的最小值是;
(5)已知m,n是兩條不重合的直線,α,β是兩個(gè)不重合的平面,若m⊥α,n∥β且m⊥n,則α⊥β;其中正確的結(jié)論是:   

查看答案和解析>>

同步練習(xí)冊(cè)答案