16.一天,小亮看到家中的塑料桶中有一個豎直放置的玻璃杯,桶子和玻璃杯的形狀都是圓柱形,桶口的半徑是杯口半徑的2倍,其主視圖如左圖所示.小亮決定做個試驗(yàn):把塑料桶和玻璃杯看作一個容器,對準(zhǔn)杯口勻速注水,注水過程中杯子始終豎直放置,則下列能反映容器最高水位h與注水時間t之間關(guān)系的大致圖象是(  )
A.B.
C.D.

分析 根據(jù)將一盛有部分水的圓柱形小玻璃杯放入事先沒有水的大圓柱形容器內(nèi),現(xiàn)用一注水管沿大容器內(nèi)壁勻速注水,即可求出小水杯內(nèi)水面的高度h(cm)與注水時間t(min)的函數(shù)圖象.

解答 解:一注水管向小玻璃杯內(nèi)注水,水面在逐漸升高,當(dāng)小杯中水滿時,開始向大桶內(nèi)流,這時水位高度不變,
因?yàn)楸雍屯暗酌姘霃奖仁?:2,則底面積的比為1:4,在高度相同情況下體積比為1:4,杯子內(nèi)水的體積與杯子外水的體積比是1:3,所以高度不變時,杯外注水時間是杯內(nèi)注水時間的3倍,當(dāng)桶水面高度與小杯一樣后,再繼續(xù)注水,水面高度在升高,升高的比開始慢.
故選:C.

點(diǎn)評 此題主要考查了函數(shù)圖象,關(guān)鍵是問題的過程,能夠通過圖象得到函數(shù)是隨自變量的增大,知道函數(shù)值是增大還是減小.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知集合A{x|x2-5x+6=0,x∈R},B={x|0<x<5,x∈N},則滿足條件A⊆C⊆B的集合C的個數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知四邊形ABCD是⊙O的內(nèi)接梯形,AB∥CD,AB=8cm,CD=6cm,⊙O的半徑等于5cm,則梯形ABCD的面積為7cm2或49cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.給出如下命題,正確的序號是( 。
A.命題:?x∈R,x2≠x的否定是:?x0∈R,使得x02≠x
B.命題:若x≥2且y≥3,則x+y≥5的否命題為:若x<2且y<3,則x+y<5
C.若ω=1是函數(shù)f(x)=cosωx在區(qū)間[0,π]上單調(diào)遞減的充分不必要條件
D.命題:?x0∈R,x02+a<0為假命題,則實(shí)數(shù)a的取值范圍是a>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知命題p:“?x>0,3x>1”的否定是“?x≤0,3x≤1”,命題q:“a<-2”是“函數(shù)f(x)=ax+3在區(qū)間[-1,2]上存在零點(diǎn)”的充分不必要條件,則下列命題為真命題的是(  )
A.p∧qB.p∨¬qC.¬p∧qD.¬p∧¬q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,邊長為2的正方形ABCD繞AB邊所在直線旋轉(zhuǎn)一定的角度(小于180°)到ABEF的位置.
(1)若∠CBE=120°,求三棱錐B-ADF的外接球的表面積;
(2)若K為線段BE上異于B,E的點(diǎn),CE=2$\sqrt{2}$.設(shè)直線AK與平面BDF所成角為φ,當(dāng)30°≤φ≤45°時,求BK的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若函數(shù)y=x2+ax+3為偶函數(shù),則a=(  )
A.2B.1C.-1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知集合A={x|-4<x≤7},B={x|-5≤x<6},N={x|a-4<x<a+8},全集U=R.
(Ⅰ)求A∩B,A∪B
(Ⅱ)若(CUB)∪N=R,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知f(x)=(x-a)(x-b)-2,(a<b)的兩個零點(diǎn)分別為α,β,(α<β)則( 。
A.a<α<b<βB.α<a<b<βC.a<α<β<bD.α<a<β<b

查看答案和解析>>

同步練習(xí)冊答案