(2010•宿州三模)在數(shù)列{an}中,已知an+1+an-1=2an(n∈N+,n≥2),若平面上的三個不共線的非零向量
OA
、
OB
OC
,滿足
OC
=a1005
OA
+a1006
OB
,三點(diǎn)A、B、C共線,且直線不過O點(diǎn),則S2010等于( 。
分析:由an+1=an+a(n∈N*,a為常數(shù)),知數(shù)列{an}是等差數(shù)列,由
OC
=a1005
OA
+a1006
OB
,且A、B、C共線,知a1+a2010=1,再由等差數(shù)列的前n項(xiàng)和公式能夠求出S2010
解答:解:在數(shù)列{an}中,已知an+1+an-1=2an(n∈N+,n≥2),∴數(shù)列{an}是等差數(shù)列.
三點(diǎn)A、B、C共線的充要條件是,對平面內(nèi)任意一點(diǎn)O,都有
OC
=m 
OA
+(1-m)
OB

OC
=a1005
OA
+a1006
OB
,∴a1005+a1006=1,∴a1+a2010=1,則S2010 =
2010×(a1+a2010)
2
=1005.
故選:A.
點(diǎn)評:本題考查向量和數(shù)列的綜合運(yùn)用,解題時要認(rèn)真審題,注意A、B、C三點(diǎn)共線的充要條件是:對平面內(nèi)任意一點(diǎn)O,都有
OC
=m 
OA
+(1-m)
OB
,解題的關(guān)鍵是由
OC
=a1005
OA
+a1006
OB
,且A、B、C共線,知a1+a2010=1.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2010•宿州三模)已知二次曲線
x2
4
+
y2
m
=1,則當(dāng)m∈[-2,-1]
時,該曲線的離心率的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•宿州三模)若將函數(shù)f(x)=Asin(ωx+
π
6
)
(A>0,ω>0)的圖象向左平
π
6
移個單位后得到的圖象關(guān)于原點(diǎn)對稱,則ω的值可能為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•宿州三模)曲線y=
2
cosx
-
π
4
x=
π
4
處的切線方程是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•宿州三模)設(shè)不等式組
x-y+5≥0
x+y≥a
0≤x≤2
所表示的平面區(qū)域是一個三角形,則此平面區(qū)域面積的最大值
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•宿州三模)已知函數(shù)f(x)=x2-2alnx,g(x)=
13
x3-x2

(1)討論函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)≥g'(x)對于任意的x∈(1,+∞)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案