【題目】如圖是一個半徑為1千米的扇形景點的平面示意圖,.原有觀光道路OC,且.為便于游客觀賞,景點管理部門決定新建兩條道路PQ、PA,其中P在原道路OC(不含端點O、C)上,Q在景點邊界OB上,且,同時維修原道路的OP段,因地形原因,新建PQ段、PA段的每千米費用分別是萬元、萬元,維修OP段的每千米費用是萬元.
(1)設,求所需總費用,并給出的取值范圍;
(2)當P距離O處多遠時,總費用最小.
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有流量均為的兩條河流匯合于某處后,不斷混合,它們的含沙量分別為和.假設從匯合處開始,沿岸設有若干個觀測點,兩股水流在流往相鄰兩個觀測點的過程中,其混合效果相當于兩股水流在1秒內(nèi)交換的水量,其交換過程為從A股流入B股的水量,經(jīng)混合后,又從B股流入A股水并混合,問從第幾個觀測點開始,兩股河水的含沙量之差小于.(不考慮泥沙沉淀).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱錐,側(cè)棱,底面三角形為正三角形,邊長為,頂點在平面上的射影為,有,且.
(Ⅰ)求證: 平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)線段上是否存在點使得⊥平面,如果存在,求的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓的左焦點為,上頂點為.已知橢圓的短軸長為4,離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設點在橢圓上,且異于橢圓的上、下頂點,點為直線與軸的交點,點在軸的負半軸上.若(為原點),且,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的圖象過點和點.
(1)求函數(shù)的最大值與最小值;
(2)將函數(shù)的圖象向左平移個單位后,得到函數(shù)的圖象;已知點,若函數(shù)的圖象上存在點,使得,求函數(shù)圖象的對稱中心.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列的前項和為,并且,,數(shù)列滿足:,,記數(shù)列的前項和為.
(1)求數(shù)列的通項公式及前項和公式;
(2)求數(shù)列的通項公式及前項和公式;
(3)記集合,若的子集個數(shù)為16,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了配合今年上海迪斯尼游園工作,某單位設計了統(tǒng)計人數(shù)的數(shù)學模型:以表示第個時刻進入園區(qū)的人數(shù);以表示第個時刻離開園區(qū)的人數(shù).設定以分鐘為一個計算單位,上午點分作為第個計算人數(shù)單位,即;點分作為第個計算單位,即;依次類推,把一天內(nèi)從上午點到晚上點分分成個計算單位(最后結(jié)果四舍五入,精確到整數(shù)).
(1)試計算當天點至點這一小時內(nèi),進入園區(qū)的游客人數(shù)、離開園區(qū)的游客人數(shù)各為多少?
(2)假設當日園區(qū)游客總?cè)藬?shù)達到或超過萬時,園區(qū)將采取限流措施.該單位借助該數(shù)學模型知曉當天點(即)時,園區(qū)總?cè)藬?shù)會達到最高,請問當日是否要采取限流措施?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點,(為正整數(shù))都在函數(shù)的圖象上.
(1)若數(shù)列是等差數(shù)列,證明:數(shù)列是等比數(shù)列;
(2)設,過點的直線與兩坐標軸所圍成的三角形面積為,試求最小的實數(shù),使對一切正整數(shù)恒成立;
(3)對(2)中的數(shù)列,對每個正整數(shù),在與之間插入個3,得到一個新的數(shù)列,設是數(shù)列的前項和,試探究2016是否是數(shù)列中的某一項,寫出你探究得到的結(jié)論并給出證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com