【題目】已知函數(shù).

(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;

(2)若有兩個(gè)零點(diǎn),求的取值范圍.

【答案】(1) ;(2)

【解析】試題分析:(1) 求出,由可求出切線的斜率,根據(jù)點(diǎn)斜式即可求得切線方程;(2)討論兩種情況,當(dāng)時(shí),顯然上單調(diào)遞增,至多一個(gè)零點(diǎn),不符合題意,當(dāng)時(shí),可證明:當(dāng)時(shí),有兩個(gè)零點(diǎn).的取值范圍是.

試題解析:(1)

(2)

①當(dāng)時(shí),顯然上單調(diào)遞增;

②當(dāng)時(shí),令,則,易知其判別式為正,

設(shè)方程的兩個(gè)根分別為,則

,其中

所以函數(shù)上遞增,在上遞減.

①當(dāng)時(shí),顯然上單調(diào)遞增,至多一個(gè)零點(diǎn),不符合題意;

②當(dāng)時(shí),函數(shù)上遞增,在上遞減,

要使有兩個(gè)零點(diǎn),必須,即

又由得:,代入上面的不等式得:

,解得

下面證明:當(dāng)時(shí),有兩個(gè)零點(diǎn).

,

,

,

,

所以上各有一個(gè)零點(diǎn).

【方法點(diǎn)晴】本題主要考查利用導(dǎo)數(shù)求曲線切線方程、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與零點(diǎn),屬于難題.求曲線切線方程的一般步驟是:(1)求出處的導(dǎo)數(shù),即在點(diǎn) 出的切線斜率(當(dāng)曲線處的切線與軸平行時(shí),在 處導(dǎo)數(shù)不存在,切線方程為);(2)由點(diǎn)斜式求得切線方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的焦距為2,過(guò)短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)的圓的面積為,過(guò)橢圓的右焦點(diǎn)作斜率為)的直線與橢圓相交于兩點(diǎn),線段的中點(diǎn)為

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過(guò)點(diǎn)垂直于的直線與軸交于點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班有36名同學(xué)參加數(shù)學(xué)、物理、化學(xué)課外探究小組,每名同學(xué)至多參加兩個(gè)小組,已知參加數(shù)學(xué)、物理、化學(xué)小組的人數(shù)分別為26,15,13,同時(shí)參加數(shù)學(xué)和物理小組的有6人,同時(shí)參加物理和化學(xué)小組的有4人,則同時(shí)參加數(shù)學(xué)和化學(xué)小組的有人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù) 的圖象向左平移φ(φ>0)個(gè)單位后,所得到的圖象對(duì)應(yīng)的函數(shù)為奇函數(shù),則φ的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,扇形OAB的半徑為1,圓心角為120°,四邊形PQRS是扇形的內(nèi)接矩形,當(dāng)其面積最大時(shí),求點(diǎn)P的位置,并求此最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】假設(shè)要抽查某企業(yè)生產(chǎn)的某種品牌的袋裝牛奶的質(zhì)量是否達(dá)標(biāo),現(xiàn)從700袋牛奶中抽取50袋進(jìn)行檢驗(yàn).利用隨機(jī)數(shù)表抽取樣本時(shí),先將700袋牛奶按001,002,…,700進(jìn)行編號(hào),如果從隨機(jī)數(shù)表第3行第1組數(shù)開(kāi)始向右讀,最先讀到的5袋牛奶的編號(hào)是614,593,379,242,203,請(qǐng)你以此方式繼續(xù)向右讀數(shù),隨后讀出的3袋牛奶的編號(hào)是 . (下列摘取了隨機(jī)數(shù)表第1行至第5行)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|x=a0+a1×2+a2×22+a3×23},其中ai∈{0,1,2}(i=0,1,2,3),且a0≠0,則A中所有元素之和等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】假設(shè)小明家訂了一份報(bào)紙,送報(bào)人可能在早上6:30﹣7:30之間把報(bào)紙送到小明家,小明父親離開(kāi)家去工作的時(shí)間在早上7:00﹣8:00之間,問(wèn)小明父親在離開(kāi)家前能得到報(bào)紙(稱為事件A)的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正四棱柱中,底面邊長(zhǎng),側(cè)棱 的長(zhǎng)為4,過(guò)點(diǎn)的垂線交側(cè)棱于點(diǎn),交于點(diǎn)

1)求證: 平面;

2)求二面角的余弦值。

查看答案和解析>>

同步練習(xí)冊(cè)答案