【題目】已知拋物線的焦點為,直線.

(1)若拋物線和直線沒有公共點,求的取值范圍;

(2)若,且拋物線和直線只有一個公共點時,求的值.

【答案】(1);(2)2.

【解析】試題分析:(1)聯(lián)立方程 ,整理得

由拋物線和直線沒有公共點,則,即可求得k的取值范圍;

(2)當拋物線和直線只有一個公共點時,記公共點坐標為,由,即,解得,因為,故,將代入求得x的值即得點M的坐標,可求的值.

試題解析:(1)聯(lián)立方程

整理得,

由拋物線和直線沒有公共點,則,

,解得.

(2)當拋物線和直線只有一個公共點時,記公共點坐標為,

,即,解得

因為,故

代入,解得,

由拋物線的定義知:.

點睛:拋物線的定義是解決拋物線問題的基礎(chǔ),它能將兩種距離(拋物線上的點到焦點的距離、拋物線上的點到準線的距離)進行等量轉(zhuǎn)化.如果問題中涉及拋物線的焦點和準線,又能與距離聯(lián)系起來,那么用拋物線定義就能解決問題.因此,涉及拋物線的焦半徑、焦點弦問題,可以優(yōu)先考慮利用拋物線的定義轉(zhuǎn)化為點到準線的距離,這樣就可以使問題簡單化.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x﹣ ,g(x)=x2﹣2ax+4,若任意x1∈[0,1],存在x2∈[1,2],使f(x1)≥g(x2),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c.設(shè)向量 =(a,c), =(cosC,cosA).
(1)若 ,c= a,求角A;
(2)若 =3bsinB,cosA= ,求cosC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個正方體的平面展開圖及該正方體的直觀圖的示意圖如圖所示.

(1)請按字母F、GH標記在正方體相應(yīng)地頂點處(不需要說明理由);

(2)判斷平面BEG與平面ACH的位置關(guān)系.并說明你的結(jié)論;

(3)證明:直線DF平面BEG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點A(0,﹣2),橢圓E: =1(a>b>0)的離心率為 ,F(xiàn)是橢圓的焦點,直線AF的斜率為 ,O為坐標原點.
(Ⅰ)求E的方程;
(Ⅱ)設(shè)過點A的直線l與E相交于P,Q兩點,當△OPQ的面積最大時,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2009年廣東卷文)某單位200名職工的年齡分布情況如圖2,現(xiàn)要從中抽取40名職工作樣本,用系統(tǒng)抽樣法,將全體職工隨機按1200編號,并按編號順序平均分為40組(15號,610,196200號).若第5組抽出的號碼為22,則第8組抽出的號碼應(yīng)是 。若用分層抽樣方法,則40歲以下年齡段應(yīng)抽取 .

2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=1g(1﹣x)的值域為(﹣∞,0),則函數(shù)f(x)的定義域為(
A.[0,+∞]
B.(0,1)
C.[﹣9,+∞)
D.[﹣9,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 且Sn+an=4,n∈N*
(1)求數(shù)列{an}的通項公式;
(2)已知cn=2n+3(n∈N*),記dn=cn+logCan(C>0,C≠1),是否存在這樣的常數(shù)C,使得數(shù)列{dn}是常數(shù)列,若存在,求出C的值;若不存在,請說明理由.
(3)若數(shù)列{bn},對于任意的正整數(shù)n,均有 成立,求證:數(shù)列{bn}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,上海迪士尼樂園將一三角形地塊ABC的一角APQ開辟為游客體驗活動區(qū).已知∠A=120°,AB、AC的長度均大于200米.設(shè)AP=x,AQ=y,且AP,AQ總長度為200米.

(1)當x,y為何值時?游客體驗活動區(qū)APQ的面積最大,并求最大面積;
(2)當x,y為何值時?線段|PQ|最小,并求最小值.

查看答案和解析>>

同步練習(xí)冊答案