精英家教網 > 高中數學 > 題目詳情

(ii)當滿足條件           ___________時,有.(填所選條件的序號)

(理)③⑤  (文)②⑤

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

(本題滿分12分)如圖,四棱錐P—ABCD的底面是矩形,PA⊥面ABCD,PA=2,AB=8,BC=6,點E是PC的中點,F在AD上且AF:FD=1:2.建立適當坐標系.

(1)求EF的長;
(2)證明:EF⊥PC.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
如圖,四棱錐中,底面,四邊形中, ,, ,,E為中點.
(1)求證:CD⊥面PAC;(2)求:異面直線BE與AC所成角的余弦值;

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

本小題滿分12分)

已知三棱錐P­ABC中,PA⊥平面ABC,AB⊥AC,PA=AC=AB,
N為AB上一點,AB=4AN,M,S分別為PB,BC的中點.
(I)證明:CM⊥SN;(II)求SN與平面CMN所成角的大。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
正四棱柱ABCD—A1B1C1D1中,已知AB=2,E,F分別是D1B,AD的中點,
(1)建立適當的坐標系,求出E點的坐標;
(2)證明:EF是異面直線D1B與AD的公垂線;
(3)求二面角D1—BF—C的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)如圖,直角梯形與等腰直角三角形所在的平面互相垂直.,,

(1)求證:;
(2)求直線與平面所成角的正弦值;
(3)線段上是否存在點,使// 平面?若存在,求出;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,四邊形中(圖1),的中點,,,將(圖1)沿直線折起,使二面角(如圖2)
(1)求證:平面
(2)求二面角A—DC—B的余弦值。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分14分)如圖在底面是矩形的四棱錐P-ABCD中,PA⊥底面ABCD, E、F分別是PC、PD的中點,求證:(1)EF∥平面PAB;
(2)平面PAD⊥平面PDC.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分10分)
如圖:是⊙的直徑,垂直于⊙所在的平面,是圓周上不同于的任意一點,
(1)求證:平面.
(2)圖中有幾個直角三角形.

查看答案和解析>>

同步練習冊答案