8.已知復數(shù)z1=3+ai,z2=a-3i(i為虛數(shù)單位),若z1•z2是實數(shù),則實數(shù)a的值為(  )
A.0B.±3C.3D.-3

分析 直接把z1,z2代入z1•z2,再利用復數(shù)代數(shù)形式的乘法運算化簡,由已知條件得虛部等于0,求解即可得答案.

解答 解:由z1=3+ai,z2=a-3i,
得z1•z2=(3+ai)(a-3i)=6a+(a2-9)i,
∵z1•z2是實數(shù),
∴a2-9=0,解得a=±3.
故選:B.

點評 本題考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的基本概念,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

8.如圖所示,為測量山高MN,選擇A和另一座山的山頂C為測量觀測點,從A測得M點的仰角∠MAN=60°,C點的仰角∠CAB=30°,以及∠MAC=105°,從C測得∠MCA=45°,已知山高BC=150米,則所求山高MN為150$\sqrt{6}$m.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.如圖,在直三棱柱ABC-A1B1C1中,P,Q分別是AA1,B1C1上的點,且AP=3A1P,B1C1=4B1Q.
(1)求證:PQ∥平面ABC1;
(2)若AB=AA1,BC=3,AC1=3,BC1=$\sqrt{13}$,求證:平面ABC1⊥平面AA1C1C.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.方程x2+$\sqrt{2}$x-1=0的解可視為函數(shù)y=x+$\sqrt{2}$與函數(shù)y=$\frac{1}{x}$的圖象交點的橫坐標,若x4+ax-4=0的各實根x1、x2、…、xk(k≤4)所對應的點(xi,$\frac{4}{{x}_{i}}$)(i=1,2,…,k)均在直線y=x的同一側(cè),則實數(shù)a的取值范圍是( 。
A.(-∞,-6)B.(-∞,-6)∪(6,+∞)C.(6,+∞)D.(-6,6)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知數(shù)列{an}是公比不等于1的等比數(shù)列,前n項和為Sn,a11=512,且S8、S7、S9成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)記bn=n|an|,數(shù)列{bn}的前n項和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的焦點為F1,F(xiàn)2,P是橢圓C上一點,若PF1⊥PF2,$|{{F_1}{F_2}}|=2\sqrt{3}$,△PF1F2的面積為1.
(1)求橢圓C的方程;
(2))如果橢圓C上總存在關于直線y=x+m對稱的兩點A,B,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知f(x)為奇函數(shù),當x<0時,f(x)=ln(-x)-3x,則曲線y=f(x)在(1,f(1))處的切線方程為4x+y-1=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知向量$\overrightarrow{a}$=(2,5),$\overrightarrow$=(x,-2),且$\overrightarrow{a}$∥$\overrightarrow$,則x=$-\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,正方形ABCD與梯形AMPD所在的平面互相垂直,AD⊥PD,MA∥PD,MA=AD=$\frac{1}{2}$PD=1.
(1)求證:MB∥平面PDC;
(2)求二面角M-PC-D的余弦值.

查看答案和解析>>

同步練習冊答案