【題目】已知遞增數(shù)列{an},a1=2,其前n項(xiàng)和為Sn , 且滿足3(Sn+Sn﹣1)= +2(n≥2).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足 =n,求其前n項(xiàng)和Tn .
【答案】
(1)解:3(Sn+Sn﹣1)= +2(n≥2),
可得3(Sn﹣1+Sn﹣2)=an﹣12+2(n≥3).
兩式相減可得3(an+an﹣1)=(an+an﹣1)(an﹣an﹣1),
由遞增數(shù)列{an},a1=2,
可得an﹣an﹣1=3,(n≥3).
由3(a1+a2+a1)=a22+2,3(a1+a2+a3+a1+a2)=a32+2,
求得a2=5,a3=8,
由等差數(shù)列的通項(xiàng)公式可得an=8+3(n﹣3)=3n﹣1,
上式對(duì)n=1,2也成立,
故數(shù)列{an}的通項(xiàng)公式為an=3n﹣1;
(2)解:數(shù)列{bn}滿足 =n,
可得bn=(3n﹣1)2n,
前n項(xiàng)和Tn=22+522+823+…+(3n﹣1)2n,
2Tn=222+523+824+…+(3n﹣1)2n+1,
兩式相減可得,﹣Tn=4+3(22+23+…+2n)﹣(3n﹣1)2n+1
=4+3 ﹣(3n﹣1)2n+1,
化簡(jiǎn)可得Tn=(3n﹣4)2n+1+8
【解析】(1)運(yùn)用數(shù)列的遞推式,n≥2時(shí),an=Sn﹣Sn﹣1 , 結(jié)合條件和等差數(shù)列的定義和通項(xiàng)公式即可得到所求;(2)求出bn=(3n﹣1)2n , 運(yùn)用數(shù)列的求和方法:錯(cuò)位相減法,結(jié)合等比數(shù)列的求和公式,化簡(jiǎn)整理,即可得到所求和.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解數(shù)列的前n項(xiàng)和的相關(guān)知識(shí),掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系,以及對(duì)數(shù)列的通項(xiàng)公式的理解,了解如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的函數(shù)f(x),當(dāng)x∈[0,2]時(shí),f(x)=4(1﹣|x﹣1|),且對(duì)于任意實(shí)數(shù)x∈[2n﹣2,2n+1﹣2](n∈N* , n≥2),都有f(x)= f( ﹣1).若g(x)=f(x)﹣logax有且只有三個(gè)零點(diǎn),則a的取值范圍是( )
A.[2,10]
B.[ , ]
C.(2,10)
D.[2,10)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=2sinθ.
(Ⅰ)判斷直線l與圓C的交點(diǎn)個(gè)數(shù);
(Ⅱ)若圓C與直線l交于A,B兩點(diǎn),求線段AB的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知bcos2 +acos2 = c.
(Ⅰ)求證:a,c,b成等差數(shù)列;
(Ⅱ)若C= ,△ABC的面積為2 ,求c.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某程序框圖如圖所示,該程序運(yùn)行后若輸出S的值是2,則判斷框內(nèi)可填寫( )
A.i≤2015?
B.i≤2016?
C.i≤2017?
D.i≤2018?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),若以該直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρsin2θ﹣4cosθ=0.
(1)求直線l與曲線C的普通方程;
(2)已知直線l與曲線C交于A,B兩點(diǎn),設(shè)M(2,0),求| |的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,已知2a= csinA﹣acosC.
(1)求C;
(2)若c= ,求△ABC的面積S的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】調(diào)查表明:甲種農(nóng)作物的長(zhǎng)勢(shì)與海拔高度、土壤酸堿度、空氣濕度的指標(biāo)有極強(qiáng)的相關(guān)性,現(xiàn)將這三項(xiàng)的指標(biāo)分別記為x,y,z,并對(duì)它們進(jìn)行量化:0表示不合格,1表示臨界合格,2表示合格,再用綜合指標(biāo)ω=x+y+z的值評(píng)定這種農(nóng)作物的長(zhǎng)勢(shì)等級(jí),若ω≥4,則長(zhǎng)勢(shì)為一級(jí);若2≤ω≤3,則長(zhǎng)勢(shì)為二級(jí);若0≤ω≤1,則長(zhǎng)勢(shì)為三級(jí),為了了解目前這種農(nóng)作物長(zhǎng)勢(shì)情況,研究人員隨機(jī)抽取10塊種植地,得到如表中結(jié)果:
種植地編號(hào) | A1 | A2 | A3 | A4 | A5 |
(x,y,z) | (1,1,2) | (2,1,1) | (2,2,2) | (0,0,1) | (1,2,1) |
種植地編號(hào) | A6 | A7 | A8 | A9 | A10 |
(x,y,z) | (1,1,2) | (1,1,1) | (1,2,2) | (1,2,1) | (1,1,1) |
(Ⅰ)在這10塊該農(nóng)作物的種植地中任取兩塊地,求這兩塊地的空氣濕度的指標(biāo)z相同的概率;
(Ⅱ)從長(zhǎng)勢(shì)等級(jí)是一級(jí)的種植地中任取一塊地,其綜合指標(biāo)為A,從長(zhǎng)勢(shì)等級(jí)不是一級(jí)的種植地中任取一塊地,其綜合指標(biāo)為B,記隨機(jī)變量X=A﹣B,求X的分布列及其數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=4x﹣2x , 實(shí)數(shù)s,t滿足f(s)+f(t)=0,a=2s+2t , b=2s+t .
(1)當(dāng)函數(shù)f(x)的定義域?yàn)閇﹣1,1]時(shí),求f(x)的值域;
(2)求函數(shù)關(guān)系式b=g(a),并求函數(shù)g(a)的定義域D;
(3)在(2)的結(jié)論中,對(duì)任意x1∈D,都存在x2∈[﹣1,1],使得g(x1)=f(x2)+m成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com