證明不等式:若x>0,則ln(1+x)>

 

【答案】

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)若任意直線l過點(diǎn)F(0,1),且與函數(shù)f(x)=
1
4
x2
的圖象C交于兩個不同的點(diǎn)A,B,分別過點(diǎn)A,B作C的切線,兩切線交于點(diǎn)M,證明:點(diǎn)M的縱坐標(biāo)是一個定值,并求出這個定值;
(2)若不等式f(x)≥g(x)恒成立,g(x)=alnx(a>o)求實(shí)數(shù)a的取值范圍;
(3)求證:
ln24
24
+
ln34
34
+
ln44
44
+…
lnn4
n4
2
e
,(其中e為無理數(shù),約為2.71828).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黃山模擬)已知函數(shù)f(x)=ln2(1+x),g(x)=
x2
1+x

(Ⅰ)分別求函數(shù)f(x)和g(x)的圖象在x=0處的切線方程;
(Ⅱ)證明不等式ln2(1+x)≤
x2
1+x
;
(Ⅲ)對一個實(shí)數(shù)集合M,若存在實(shí)數(shù)s,使得M中任何數(shù)都不超過s,則稱s是M的一個上界.已知e是無窮數(shù)列an=(1+
1
n
)n+a
所有項(xiàng)組成的集合的上界(其中e是自然對數(shù)的底數(shù)),求實(shí)數(shù)a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
1
2
ax+b

(Ⅰ)若f(x)與g(x)在x=1處相切,試求g(x)的表達(dá)式;
(Ⅱ)若φ(x)=
m(x-1)
x+1
-f(x)
在[1,+∞)上是減函數(shù),求實(shí)數(shù)m的取值范圍;
(Ⅲ)證明不等式:
2n
n+1
1
ln2
+
1
ln3
+
1
ln4
+…+
1
ln(n+1)
n
2
+1+
1
2
+
1
3
+…+
1
n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:山東省濟(jì)寧市魚臺二中2011-2012學(xué)年高二3月月考數(shù)學(xué)理科試題 題型:044

設(shè)函數(shù)f(x)=(1+x)2-2ln(1+x)

(1)若關(guān)于x的不等式f(x)-m≥0在[0,e-1]有實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍;

(2)設(shè)g(x)=f(x)-x2-1,若關(guān)于x的方程g(x)=p至少有一個解,求p的最小值.

(3)證明不等式:ln(x+1)<1++…+(n∈N*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:黃山模擬 題型:解答題

已知函數(shù)f(x)=ln2(1+x),g(x)=
x2
1+x

(Ⅰ)分別求函數(shù)f(x)和g(x)的圖象在x=0處的切線方程;
(Ⅱ)證明不等式ln2(1+x)≤
x2
1+x
;
(Ⅲ)對一個實(shí)數(shù)集合M,若存在實(shí)數(shù)s,使得M中任何數(shù)都不超過s,則稱s是M的一個上界.已知e是無窮數(shù)列an=(1+
1
n
)n+a
所有項(xiàng)組成的集合的上界(其中e是自然對數(shù)的底數(shù)),求實(shí)數(shù)a的最大值.

查看答案和解析>>

同步練習(xí)冊答案