年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
以圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0公共弦為直徑的圓的方程為______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
由“正三角形的內(nèi)切圓切于三邊的中點(diǎn)”,可類比猜想出正四面體的內(nèi)切球切于
四個(gè)側(cè)面( )
A.各正三角形內(nèi)任一點(diǎn) B.各正三角形的某高線上的點(diǎn)
C.各正三角形的中心 D.各正三角形外的某點(diǎn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)
(1)判斷函數(shù)的奇偶性,并加以證明;
(2)用定義證明函數(shù)在區(qū)間上為增函數(shù);
(3)若函數(shù)在區(qū)間上的最大值與最小值之和不小于,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓的離心率為,為橢圓在軸正半軸上的焦點(diǎn),、兩點(diǎn)在橢圓上,且,定點(diǎn).
(I)求證:當(dāng)時(shí);
(II)若當(dāng)時(shí)有,求橢圓的方程;
(III)在(II)的橢圓中,當(dāng)、兩點(diǎn)在橢圓上運(yùn)動(dòng)時(shí),試判斷 是否有最大值,若存在,求出最大值,并求出這時(shí)、兩點(diǎn)所在直線方程,若不存在,給出理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com