【題目】在棱長(zhǎng)為的正方體中,OAC的中點(diǎn),E是線段D1O上一點(diǎn),且D1E=λEO.

(1)若λ=1,求異面直線DECD1所成角的余弦值;

(2)若平面CDE平面CD1O,λ的值.

【答案】(1)(2)λ=2

【解析】分析:以為單位正交基底建立如圖所示的空間直角坐標(biāo)系,寫(xiě)出各點(diǎn)的坐標(biāo),
(1)求出異面直線 1的方向向量用數(shù)量積公式兩線夾角的余弦值(或補(bǔ)角的余弦值)
(2)求出兩個(gè)平面的法向量,由于兩個(gè)平面垂直,故它們的法向量的內(nèi)積為0,由此方程求參數(shù)的值即可.

詳解:

(1)為單位正交基底建立如圖所示的空間直角坐標(biāo)系

A(1,0,0),D1(0,0,1),

E

于是.

cos.

所以異面直線AECD1所成角的余弦值為.

(2)設(shè)平面CD1O的向量為m=(x1,y1,z1),由m·=0,m·=0

x1=1,得y1z1=1,即m=(1,1,1) . ………8

D1E=λEO,則E,=.10

又設(shè)平面CDE的法向量為n=(x2y2,z2),由n·=0,n·=0.

x2=2,得z2=-λ,即n=(-2,0,λ) .12

因?yàn)槠矫?/span>CDE平面CD1F,所以m·n=0,得

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)現(xiàn)有一個(gè)直角梯形水產(chǎn)養(yǎng)殖區(qū)ABCD,ABC=90°,ABCD,AB=800m,BC=1600mCD=4000m,在點(diǎn)P處有一燈塔(如圖),且點(diǎn)PBC,CD的距離都是1200m,現(xiàn)擬將養(yǎng)殖區(qū)ACD分成兩塊,經(jīng)過(guò)燈塔P增加一道分隔網(wǎng)EF,在AEF內(nèi)試驗(yàn)養(yǎng)殖一種新的水產(chǎn)品,當(dāng)AEF的面積最小時(shí),對(duì)原有水產(chǎn)品養(yǎng)殖的影響最。O(shè)AE=d

1)若PEF的中點(diǎn),求d的值;

2)求對(duì)原有水產(chǎn)品養(yǎng)殖的影響最小時(shí)的d的值,并求AEF面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線過(guò)點(diǎn),傾斜角為

1)求曲線的直角坐標(biāo)方程與直線l的參數(shù)方程;

2)設(shè)直線與曲線交于,兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)xlnx,g(x)x2ax.

1)求函數(shù)f(x)在區(qū)間[tt1](t0)上的最小值m(t);

2)令h(x)g(x)f(x),A(x1,h(x1)),B(x2h(x2))(x1x2)是函數(shù)h(x)圖像上任意兩點(diǎn),且滿足1,求實(shí)數(shù)a的取值范圍;

3)若x(0,1],使f(x)≥成立,求實(shí)數(shù)a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=eaxx1,且fx≥0.

1)求a;

2)在函數(shù)fx)的圖象上取定兩點(diǎn)Ax1,fx1)),Bx2fx2))(x1x2),記直線AB的斜率為k,問(wèn):是否存在x0∈(x1,x2),使f'x0)=k成立?若存在,求出x0的值(用x1x2表示);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),求的單調(diào)區(qū)間;

2)求函數(shù)的極值;

3)若函數(shù)有兩個(gè)零點(diǎn),求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某搜索引擎廣告按照付費(fèi)價(jià)格對(duì)搜索結(jié)果進(jìn)行排名,點(diǎn)擊一次付費(fèi)價(jià)格排名越靠前,被點(diǎn)擊的次數(shù)也可能會(huì)提高,已知某關(guān)鍵詞被甲、乙等多個(gè)公司競(jìng)爭(zhēng),其中甲、乙付費(fèi)情況與每小時(shí)點(diǎn)擊量結(jié)果繪制成如下的折線圖.

(1)試根據(jù)所給數(shù)據(jù)計(jì)算每小時(shí)點(diǎn)擊次數(shù)的均值方差并分析兩組數(shù)據(jù)的特征;

(2)若把乙公司設(shè)置的每次點(diǎn)擊價(jià)格為x,每小時(shí)點(diǎn)擊次數(shù)為y,則點(diǎn)(x,y)近似在一條直線附近.試根據(jù)前5次價(jià)格與每小時(shí)點(diǎn)擊次數(shù)的關(guān)系,求y關(guān)于x的回歸直線.(附:回歸方程系數(shù)公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的左、右焦點(diǎn)分別為,,,上的點(diǎn),的面積最大值為,直線交于兩點(diǎn),且為坐標(biāo)原點(diǎn))

1)求橢圓的方程;

2)求證:到直線的距離為定值,并求其定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】指數(shù)是用體重公斤數(shù)除以身高米數(shù)的平方得出的數(shù)字,是國(guó)際上常用的衡量人體胖瘦程度以及是否健康的一個(gè)標(biāo)準(zhǔn).對(duì)于高中男體育特長(zhǎng)生而言,當(dāng)數(shù)值大于或等于20.5時(shí),我們說(shuō)體重較重,當(dāng)數(shù)值小于20.5時(shí),我們說(shuō)體重較輕,身高大于或等于我們說(shuō)身高較高,身高小于170cm我們說(shuō)身高較矮.

1)已知某高中共有32名男體育特長(zhǎng)生,其身高與指數(shù)的數(shù)據(jù)如散點(diǎn)圖,請(qǐng)根據(jù)所得信息,完成下述列聯(lián)表,并判斷是否有的把握認(rèn)為男生的身高對(duì)指數(shù)有影響.

身高較矮

身高較高

合計(jì)

體重較輕

體重較重

合計(jì)

2)①?gòu)纳鲜?/span>32名男體育特長(zhǎng)生中隨機(jī)選取8名,其身高和體重的數(shù)據(jù)如表所示:

編號(hào)

1

2

3

4

5

6

7

8

身高

166

167

160

173

178

169

158

173

體重

57

58

53

61

66

57

50

66

根據(jù)最小二乘法的思想與公式求得線性回歸方程為.利用已經(jīng)求得的線性回歸方程,請(qǐng)完善下列殘差表,并求解釋變量(身高)對(duì)于預(yù)報(bào)變量(體重)變化的貢獻(xiàn)值(保留兩位有效數(shù)字)

編號(hào)

1

2

3

4

5

6

7

8

體重

57

58

53

61

66

57

50

66

殘差

0.1

0.3

0.9

②通過(guò)殘差分析,對(duì)于殘差的最大(絕對(duì)值)的那組數(shù)據(jù),需要確認(rèn)在樣本點(diǎn)的采集中是否有人為的錯(cuò)誤,已知通過(guò)重新采集發(fā)現(xiàn),該組數(shù)據(jù)的體重應(yīng)該為.請(qǐng)重新根據(jù)最最小二乘法的思想與公式,求出男體育特長(zhǎng)生的身高與體重的線性回歸方程.

(參考公式)

,,,.

(參考數(shù)據(jù))

,,.

0.10

0.05

0.01

0.005

2.706

3.811

6.635

7.879

查看答案和解析>>

同步練習(xí)冊(cè)答案