若對(duì)于定義在R上的函數(shù)f(x),其圖象是連續(xù)不斷的,且存在常數(shù)λ(λ∈R),使得f(x+λ)+λf(x)=0對(duì)任意的實(shí)數(shù)x恒成立,則稱f(x)是“λ-同伴函數(shù)”.下列關(guān)于“λ-同伴函數(shù)”的命題:
①“
1
2
-同伴函數(shù)”至少有一個(gè)零點(diǎn); 
②f(x)=x2是“λ-同伴函數(shù)”;
③f(x)=2x是“λ-同伴函數(shù)”;      
④f(x)=0是唯一一個(gè)常值“λ-同伴函數(shù)”.
其中正確的命題個(gè)數(shù)為( 。
分析:①由定義,得出條件方程.然后令x=0,可得f(
1
2
)=-
1
2
f(0),若f(0)=0,顯然f(x)=0有實(shí)數(shù)根;若f(0)≠0,f(
1
2
)•f(0)<0,由此可得結(jié)論.
②可以用反證法,舉出反例.③設(shè)由條件方程,得到2λ+λ=0,從而結(jié)合圖象能確定方程到2λ+λ=0有解,從而滿足定義.
④設(shè)f(x)=C是一個(gè)“λ-伴隨函數(shù)”,則(1+λ)C=0,當(dāng)λ=-1時(shí),可以取遍實(shí)數(shù)集,因此f(x)=0不是唯一一個(gè)常值“λ-伴隨函數(shù)”
解答:①令x=0,得f(
1
2
)+
1
2
f(0)=0,所以f(
1
2
)=-f(0).若f(0)=0,顯然f(x)=0有實(shí)數(shù)根;若f(0)≠0,f(
1
2
)•f(0)=-(f(0))2<0.
又因?yàn)閒(x)的函數(shù)圖象是連續(xù)不斷,所以f(x)在(0,
1
2
)上必有實(shí)數(shù)根.因此任意的“-伴隨函數(shù)”必有根,即任意“-伴隨函數(shù)”至少有一個(gè)零點(diǎn),故①正確
②用反證法,假設(shè)f(x)=x2是一個(gè)“λ-伴隨函數(shù)”,則(x+λ)2+λx2=0,即(1+λ)x2+2λx+λ2=0對(duì)任意實(shí)數(shù)x成立,所以λ+1=2λ=λ2=0,而此式無(wú)解,所以f(x)=x2不是一個(gè)“λ-伴隨函數(shù)”,故②不正確;
③設(shè)f(x)=2x是“λ-同伴函數(shù)”,則2x+λ+λ?2x=0,即2x?2λ+λ?2x=0,所以2λ+λ=0,即2λ=-λ.作出函數(shù)y=2x,y=-x,由圖象可知2λ=-λ.,有唯一解,所以③f(x)=2x是“λ-同伴函數(shù)”.
④設(shè)f(x)=C是一個(gè)“λ-伴隨函數(shù)”,則(1+λ)C=0,當(dāng)λ=-1時(shí),可以取遍實(shí)數(shù)集,因此f(x)=0不是唯一一個(gè)常值“λ-伴隨函數(shù)”,故④不正確.
所以正確的命題是①③.
故選B.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)的概念及構(gòu)成要素,函數(shù)的零點(diǎn),正確理解f(x)是λ-同伴函數(shù)的定義,是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法中:
①函數(shù)f(x)=
x-1
x+1
與g(x)=x的圖象沒(méi)有公共點(diǎn);
②若定義在R上的函數(shù)f(x)滿足f(x+3)=-f(x),則6為函數(shù)f(x)的周期;
③若對(duì)于任意x∈(1,3),不等式x2-ax+2<0恒成立,則a>
11
3
;
④定義:“若函數(shù)f(x)對(duì)于任意x∈R,都存在正常數(shù)M,使|f(x)|≤M|x|恒成立,則稱函數(shù)f(x)為有界泛函.”由該定義可知,函數(shù)f(x)=x2+1為有界泛函.
則其中正確的是
①②③
①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于定義在R上的函數(shù)f(x)=
-4•3x+m
9x
,若其所有的函數(shù)值不超過(guò)1,則m的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

對(duì)于定義在R上的函數(shù)數(shù)學(xué)公式,若其所有的函數(shù)值不超過(guò)1,則m的取值范圍是


  1. A.
    (-∞,-4]
  2. B.
    (-∞,0]
  3. C.
    [-4,+∞)
  4. D.
    (0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

對(duì)于定義在R上的函數(shù)f(x)=
-4•3x+m
9x
,若其所有的函數(shù)值不超過(guò)1,則m的取值范圍是(  )
A.(-∞,-4]B.(-∞,0]C.[-4,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2005-2006學(xué)年江蘇省無(wú)錫市天一中學(xué)高三數(shù)學(xué)專項(xiàng)訓(xùn)練:函數(shù)(解析版) 題型:選擇題

對(duì)于定義在R上的函數(shù),若其所有的函數(shù)值不超過(guò)1,則m的取值范圍是( )
A.(-∞,-4]
B.(-∞,0]
C.[-4,+∞)
D.(0,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案