【題目】從某小學隨機抽取100名學生,將他們的身高(單位:厘米)按照區(qū)間 [ 100 , 110),[ 110 , 120),[ 120 , 130),[130 ,140) , [140 , 150] 進行分組,得到頻率分布直方圖(如圖).
(Ⅰ)求直方圖中a的值;
(Ⅱ)若要從身高在[ 120 , 130),[130 ,140) , [140 , 150] 三組內(nèi)的學生中,用分層抽樣的方法選取18人參加一項活動,求從身高在[140 ,150]內(nèi)的學生中應選取的人數(shù);
(Ⅲ)這100名學生的平均身高約為多少厘米?
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)的圖像與y軸交點的縱坐標為1,在y軸右側(cè)的第一個最大值和最小值分別為和.
(1)求函數(shù)的解析式:
(2)將函數(shù)圖像上所有點的橫坐標縮小原來的(縱坐標不變),再將所得圖像沿x軸正方向平移個單位,得到函數(shù)的圖像,求函數(shù)的解析式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,PA⊥底面ABC, .點D,E,N分別為棱PA,PC,BC的中點,M是線段AD的中點,PA=AC=4,AB=2.
(Ⅰ)求證:MN∥平面BDE;
(Ⅱ)求二面角C-EM-N的正弦值;
(Ⅲ)已知點H在棱PA上,且直線NH與直線BE所成角的余弦值為,求線段AH的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某同學用“五點法”畫函數(shù)在某一個周期內(nèi)的圖象時,列表并填入了部分數(shù)據(jù),如下表:
0 | π | 2π | |||
x | |||||
0 | 4 | -4 | 0 |
(1)請將上表數(shù)據(jù)補充完整,填寫在答題卡上相應位置,并直接寫出函數(shù)f(x)的解析式;
(2)將圖象上所有點向左平行移動θ()個單位長度,得到的圖象.若圖象的一個對稱中心為,求θ的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,某小區(qū)為美化環(huán)境,準備在小區(qū)內(nèi)的草坪的一側(cè)修建一條直路OC,另一側(cè)修建一條休閑大道.休閑大道的前一段OD是函數(shù)的圖象的一部分,后一段DBC是函數(shù)的圖象,圖象的最高點為,且,垂足為點F.
(1)求函數(shù)的解析式;
(2)若在草坪內(nèi)修建如圖所示的矩形兒童樂園PMFE,點P在曲線OD上,其橫坐標為,點E在OC上,求兒童樂園的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在中學生綜合素質(zhì)評價某個維度的測評中,分優(yōu)秀、合格、尚待改進三個等級進行學生互評.某校高一年級有男生500人,女生400人,為了了解性別對該維度測評結(jié)果的影響,采用分層抽樣方法從高一年級抽取了45名學生的測評結(jié)果,并作出頻數(shù)統(tǒng)計表如下:
表一:男生
男生 | 等級 | 優(yōu)秀 | 合格 | 尚待改進 |
頻數(shù) | 15 | 5 |
表二:女生
女生 | 等級 | 優(yōu)秀 | 合格 | 尚待改進 |
頻數(shù) | 15 | 3 |
(1)求,的值;
(2)從表二的非優(yōu)秀學生中隨機抽取2人交談,求所選2人中恰有1人測評等級為合格的概率;
(3)由表中統(tǒng)計數(shù)據(jù)填寫列聯(lián)表,并判斷是否有90%的把握認為“測評結(jié)果優(yōu)秀與性別有關(guān)”.
男生 | 女生 | 總計 | |
優(yōu)秀 | |||
非優(yōu)秀 | |||
總計 | 45 |
參考公式:,其中.
參考數(shù)據(jù):
0.01 | 0.05 | 0.01 | |
| 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如表提供了工廠技術(shù)改造后某種型號設(shè)備的使用年限和所支出的維修費(萬元)的幾組對照數(shù)據(jù):
(年) | 2 | 3 | 4 | 5 | 6 |
(萬元) | 1 | 2.5 | 3 | 4 | 4.5 |
參考公式:,.
(1)若知道對呈線性相關(guān)關(guān)系,請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(2)已知該工廠技術(shù)改造前該型號設(shè)備使用10年的維修費用為9萬元,試根據(jù)(1)求出的線性回歸方程,預測該型號設(shè)備技術(shù)改造后,使用10年的維修費用能否比技術(shù)改造前降低?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,直線l的參數(shù)方程為(t是參數(shù)),在以坐標原點為極點,x軸的正半軸為極軸的極坐標系中,曲線C的極坐標方程為.
(Ⅰ)寫出直線l的普通方程、曲線C的參數(shù)方程;
(Ⅱ)過曲線C上任意一點A作與直線l的夾角為45°的直線,設(shè)該直線與直線l交于點B,求的最值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】市政府招商引資,為吸引外商,決定第一個月產(chǎn)品免稅,某外資廠該第一個月A型產(chǎn)品出廠價為每件10元,月銷售量為6萬件;第二個月,當?shù)卣_始對該商品征收稅率為 ,即銷售1元要征收元)的稅收,于是該產(chǎn)品的出廠價就上升到每件元,預計月銷售量將減少p萬件.
(1)將第二個月政府對該商品征收的稅收y(萬元)表示成p的函數(shù),并指出這個函數(shù)的定義域;
(2)要使第二個月該廠的稅收不少于1萬元,則p的范圍是多少?
(3)在第(2)問的前提下,要讓廠家本月獲得最大銷售金額,則p應為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com