【題目】已知函數(shù),.

1)記,試判斷在區(qū)間內(nèi)零點個數(shù)并說明理由;

2)記(1)中的內(nèi)的零點為,,若有兩個不等實根,判斷的大小,并給出對應的證明.

【答案】1)一個零點,理由見解析;(2,證明見解析

【解析】

1)利用導數(shù)得到在區(qū)間上是增函數(shù),,,并且上連續(xù)的,由零點定理即得解;(2)先求出當時,是單調(diào)遞增函數(shù);當時,是單調(diào)遞減函數(shù),轉化成證明,即轉化成證明.

1)由題意:,

那么,定義域為,,

由題設,故,即在區(qū)間上是增函數(shù).

那么,,并且上連續(xù)的,

故根據(jù)零點存在定理,有在區(qū)間有且僅有唯一實根,即一個零點.

2,

時,恒大于

所以當時,是單調(diào)遞增函數(shù);

時,恒小于是單調(diào)遞減函數(shù).有兩個不等實根,

,,顯然:當時,.

要證明,即可證明

時是單調(diào)遞減函數(shù).故證.

又由,即可證:.,(構造思想),

,

,由(1)可知:,

那么:,

,則

時,;當時,;故

;故,而,從而有:

因此:,即單增,從而時,,

成立.故得:.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】若方程所表示的曲線為C,給出下列四個命題:

①若C為橢圓,則1t4t

②若C為雙曲線,則t4t1;

③曲線C不可能是圓;

④若C表示橢圓,且長軸在x軸上,則1t.

其中正確的命題是________(把所有正確命題的序號都填在橫線上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]

在直角坐標系中,曲線:,為參數(shù)).在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,曲線.

(1)說明是哪一種曲線,并將的方程化為極坐標方程;

(2)若直線的方程為,設的交點為,,的交點為,,若的面積為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線為參數(shù),),曲線為參數(shù)),相切于點,以坐標原點為極點,軸的非負半軸為極軸建立極坐標系.

1)求的極坐標方程及點的極坐標;

2)已知直線與圓交于,兩點,記的面積為,的面積為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年來,隨著互聯(lián)網(wǎng)技術的快速發(fā)展,共享經(jīng)濟覆蓋的范圍迅速擴張,繼共享單車、共享汽車之后,共享房屋以“民宿”、“農(nóng)家樂”等形式開始在很多平臺上線.某創(chuàng)業(yè)者計劃在某景區(qū)附近租賃一套農(nóng)房發(fā)展成特色“農(nóng)家樂”,為了確定未來發(fā)展方向,此創(chuàng)業(yè)者對該景區(qū)附近六家“農(nóng)家樂”跟蹤調(diào)查了天.得到的統(tǒng)計數(shù)據(jù)如下表,為收費標準(單位:元/日),為入住天數(shù)(單位:),以頻率作為各自的“入住率”,收費標準與“入住率”的散點圖如圖

x

50

100

150

200

300

400

t

90

65

45

30

20

20

(1)若從以上六家“農(nóng)家樂”中隨機抽取兩家深入調(diào)查,記為“入住率”超過的農(nóng)家樂的個數(shù),求的概率分布列;

(2)令,由散點圖判斷哪個更合適于此模型(給出判斷即可,不必說明理由)?并根據(jù)你的判斷結果求回歸方程.(結果保留一位小數(shù))

(3)若一年按天計算,試估計收費標準為多少時,年銷售額最大?(年銷售額入住率收費標準

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分13分)某縣一個化肥廠生產(chǎn)甲、乙兩種混合肥料,生產(chǎn)1車皮甲種肥料的主要原料是磷酸鹽4噸、硝酸鹽18噸;生產(chǎn)1車皮乙種肥料需要的主要原料是磷酸鹽1噸、硝酸鹽15噸先庫存磷酸鹽10噸、硝酸鹽66噸,在此基礎上生產(chǎn)這兩種混合肥料若生產(chǎn)1車皮甲種肥料產(chǎn)生的利潤為10000元;生產(chǎn)1車皮乙種肥料產(chǎn)生的利潤為5000元那么分別生產(chǎn)甲、乙兩種肥料各多少車皮能產(chǎn)生最大的利潤?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓離心率為,且與雙曲線有相同焦點.

1)求橢圓標準方程;

2)過點的直線與橢圓交于兩點,原點在以為直徑的圓上,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】16屆亞運會在中國廣州進行,為了搞好接待工作,組委會招幕了名男志愿者和名女志愿者,調(diào)查發(fā)現(xiàn),男、女志愿者中分別有人和人喜愛運動,其余人不喜愛運動.

1)根據(jù)以上數(shù)據(jù)完成以下列聯(lián)表:

喜愛運動

不喜愛運動

總計

總計

2)根據(jù)列聯(lián)表的獨立性檢驗,能否在犯錯誤的概率不超過的前提下認為性別與喜愛運動有關?

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知關于x的不等式的解集中的整數(shù)解恰好有三個,則實數(shù)a的取值范圍是______

查看答案和解析>>

同步練習冊答案