一個總體中的1000個個體編號為0,1,2,…,999,并依次將其分為10個小組,組號為0,1,2,…,9,要用系統(tǒng)抽樣方法抽取一個容量為10的樣本,規(guī)定如果在第0組隨機抽取的號碼為x,那么依次錯位地得到后面各組的號碼,即第k組中抽取的號碼的后兩位數(shù)為x+33k的后兩位數(shù).
(1)當x=24時,寫出所抽取樣本的10個號碼;
(2)若所抽取樣本的10個號碼中有一個的后兩位數(shù)是87,求x的取值范圍.

(1)當x=24時,按規(guī)則可知所抽取的樣本的10個號碼依次為:24,157,290,323,456,589,622,755,888,921.
(2)當k=0,1,2,…,9時,33k的值依次為0,33,66,99,132,165,198,231,264,297;又抽取樣本的10個號碼中有一個的后兩位數(shù)是87,從而x可以為87,54,21,88,55,22,89,56,23,90,所以x的取值范圍是{21,22,23,54,55,56,87,88,89,90}.

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

對甲、乙兩名自行車賽手在相同條件下進行了6次測試,測得他們的最大速度(m/s)的數(shù)據(jù)如下表.


27
38
30
37
35
31

33
29
38
34
28
36
 
(1)畫出莖葉圖,由莖葉圖判斷哪位選手的成績較穩(wěn)定?
(2)分別求出甲、乙兩名自行車賽手最大速度(m/s)數(shù)據(jù)的平均數(shù)、中位數(shù)、標準差,并判斷選誰參加比賽更合適.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題


三、解答題:解答應(yīng)寫出文字說明、證明過程或演算步驟(本大題共6個大題,共76分)。
17.(12分)以下資料是一位銷售經(jīng)理收集來的每年銷售額和銷售經(jīng)驗年數(shù)的關(guān)系:

銷售經(jīng)驗(年)
 
1
 
3
 
4
 
4
 
6
 
8
 
10
 
10
 
11
 
13
 
年銷售額(千元)
 
80
 
97
 
92
 
102
 
103
 
111
 
119
 
123
 
117
 
136
 
 (1)依據(jù)這些數(shù)據(jù)畫出散點圖并作直線=78+4.2x,計算(yii2; 
(2)依據(jù)這些數(shù)據(jù)由最小二乘法求線性回歸方程,并據(jù)此計算;
(3)比較(1)和(2)中的殘差平方和的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分)某班同學利用暑期進行社會實踐,對歲的人群隨機抽取人進行了一次生活習慣是否符合低碳觀念的調(diào)查,若生活習慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”,得到如下統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖:

(Ⅰ)補全頻率分布直方圖并求、、的值;
(Ⅱ)從年齡段在的“低碳族”中采用分層抽樣法抽取人參加戶外低碳體驗活動,其中選取人作為領(lǐng)隊,求選取的名領(lǐng)隊中恰有1人年齡在歲的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

日   期
1月10日
2月10日
3月10日
4月10日
5月10日
6月10日
晝夜溫差
10
11
13
12
8
6
就診人數(shù)
22
25
29
26
16
12
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.
⑴求選取的2組數(shù)據(jù)恰好是相鄰兩個月的概率;
⑵若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出關(guān)于的線性回歸方程;
⑶若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問該小組所得線性www.ks5u.com回歸方程是否理想?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

由世界自然基金會發(fā)起的“地球1小時”活動,已發(fā)展成為最有影響力的環(huán)保活動之一,今年的參與人數(shù)再創(chuàng)新高.然而也有部分公眾對該活動的實際效果與負面影響提出了疑問.對此,某新聞媒體進行了網(wǎng)上調(diào)查,所有參與調(diào)查的人中,持“支持”、“保留”和“不支持”態(tài)度的人數(shù)如下表所示:

 
支持
保留
不支持
20歲以下
800
450
200
20歲以上(含20歲)
100
150
300
(Ⅰ)在所有參與調(diào)查的人中,用分層抽樣的方法抽取個人,已知從“支持”態(tài)度的人中抽取了45人,求的值;
(Ⅱ)在持“不支持”態(tài)度的人中,用分層抽樣的方法抽取5人看成一個總體,從這5人中任意選取2人,求至少有人20歲以下的概率;
(Ⅲ)在接受調(diào)查的人中,有8人給這項活動打出的分數(shù)如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把這8個人打出的分數(shù)看作一個總體,從中任取個數(shù),求該數(shù)與總體平均數(shù)之差的絕對值超過0.6的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

有10名同學高一(x)和高二(y)的數(shù)學成績?nèi)缦拢?br />

高一成績x
74
71
72
68
76
73
67
70
65
74
高二成績y
76
75
71
70
76
79
65
77
62
72
(1)畫出散點圖;
(2)求yx的回歸方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗 (噸標準煤)的幾組對照數(shù)據(jù)


   
    
   
   
   
   
   
   
   
    (1)請畫出上表數(shù)據(jù)的散點圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(3)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標準煤.試根據(jù)(2)求出的線性回歸方程,預測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標準煤?
    (參考數(shù)值:
,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分8分)
為了了解某校高一學生體能情況,抽取200位同學進行1分鐘跳繩次數(shù)測試,將所得數(shù)據(jù)整理后畫出頻率分布直方圖(如圖所示),請回答下列問題:

(1)次數(shù)在100~110之間的頻率是多少?
(2)若次數(shù)在110以上為達標,試估計該校全體高一學生的達標率是多少?
(3)根據(jù)頻率分布直方圖估計,學生跳繩次數(shù)的平均數(shù)是多少?

查看答案和解析>>

同步練習冊答案