【題目】已知m和n是兩條不同的直線,α和β是兩個(gè)不重合的平面,那么下面給出的條件中一定能推出m⊥β的是( ).
A. α⊥β,且mα B. m∥n,且n⊥β
C. α⊥β,且m∥α D. m⊥n,且n∥β
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等差數(shù)列{an}的公差不為零,首項(xiàng)a1=1,a2是a1和a5的等比中項(xiàng),則數(shù)列的前10項(xiàng)之和是( )
A. 90 B. 100 C. 145 D. 190
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,右焦點(diǎn)到右頂點(diǎn)的距離為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)是否存在與橢圓交于兩點(diǎn)的直線:,使得成立?若存在,求出實(shí)數(shù)的取值范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1,若a,b∈[-1,1],a+b≠0時(shí)
成立.
(Ⅰ)判斷f(x)在[-1,1]上的單調(diào)性,并證明;
(Ⅱ)解不等式:;
(Ⅲ)若f(x)≤m2-2am+1對所有的a∈[-1,1]恒成立,求實(shí)數(shù)m的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)當(dāng)為何值時(shí), 最小? 此時(shí)與的位置關(guān)系如何?
(2)當(dāng)為何值時(shí), 與的夾角最小? 此時(shí)與的位置關(guān)系如何?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知Sn=1-2+3-4+…+(-1)n-1n,則S17+S33+S50等于( )
A. 0 B. 1
C. -1 D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為了分析全市9 800名初中畢業(yè)生的數(shù)學(xué)考試成績,抽取50本試卷,每本都是30份,則樣本容量是( )
A. 30 B. 50 C. 1 500 D. 9 800
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)已知函數(shù),求的極值;
(2)已知函數(shù),若存在實(shí)數(shù),使得當(dāng)時(shí),函數(shù)的最大值為,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com