命題“?x∈R,使x2+ax-4a<0為假命題”是“-16≤a≤0”的


  1. A.
    充分不必要條件
  2. B.
    必要不充分條件
  3. C.
    充要條件
  4. D.
    既不充分又不必要條件
C
分析:命題“?x∈R,使x2+ax-4a<0為假命題”,等價(jià)于命題“?x∈R,使x2+ax-4a≥0為真命題”,故△=a2+16a≤0,由此得到-16≤a≤0;由-16≤a≤0,知△=a2+16a≤0,故命題“?x∈R,使x2+ax-4a≥0為真命題”,所以命題“?x∈R,使x2+ax-4a<0為假命題”.由此得到命題“?x∈R,使x2+ax-4a<0為假命題”是“-16≤a≤0”的充要條件.
解答:∵命題“?x∈R,使x2+ax-4a<0為假命題”,
∴命題“?x∈R,使x2+ax-4a≥0為真命題”,
∴△=a2+16a≤0,
∴-16≤a≤0,
即命題“?x∈R,使x2+ax-4a<0為假命題”?“-16≤a≤0”;
∵-16≤a≤0,
∴△=a2+16a≤0,
∴命題“?x∈R,使x2+ax-4a≥0為真命題”,
∴命題“?x∈R,使x2+ax-4a<0為假命題”,
即命題“?x∈R,使x2+ax-4a<0為假命題”?“-16≤a≤0”.
故命題“?x∈R,使x2+ax-4a<0為假命題”是“-16≤a≤0”的充要條件.
故選C.
點(diǎn)評(píng):本題考查必要條件、充分條件、充要條件的判斷和應(yīng)用,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

命題“?x∈R,使x>1”的否定是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

命題“?x∈R,使x>1”的否定是


  1. A.
    ?x∈R,都有x>1
  2. B.
    ?x∈R,使x<1
  3. C.
    ?x∈R,都有x≤1
  4. D.
    ?x∈R,使x≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

命題“?x∈R,使x>1”的否定是( 。
A.?x∈R,都有x>1B.?x∈R,使x<1
C.?x∈R,都有x≤1D.?x∈R,使x≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年北京市十一學(xué)校高三(上)暑期檢測(cè)數(shù)學(xué)試卷1(文科)(解析版) 題型:選擇題

命題“?x∈R,使x>1”的否定是( )
A.?x∈R,都有x>1
B.?x∈R,使x<1
C.?x∈R,都有x≤1
D.?x∈R,使x≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年北京市十一學(xué)校高三(上)暑期檢測(cè)數(shù)學(xué)試卷1(文科)(解析版) 題型:選擇題

命題“?x∈R,使x>1”的否定是( )
A.?x∈R,都有x>1
B.?x∈R,使x<1
C.?x∈R,都有x≤1
D.?x∈R,使x≤1

查看答案和解析>>

同步練習(xí)冊(cè)答案