△ABC的外接圓的圓心為O,AB=2,數(shù)學公式,則數(shù)學公式等于


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式
C
分析:由AB,AC及BC的長,利用勾股定理的逆定理得到三角形ABC為直角三角形,即A為直角,可得BC為圓的直徑,O為BC中點,利用直角三角形斜邊上的中線等于斜邊的一半,根據(jù)BC的長求出AO及CO的長,再由AC的長,在三角形AOC中設出∠AOC=α,利用余弦定理求出cosα的值,然后利用平面向量的數(shù)量積運算法則表示出所求的式子,利用誘導公式化簡后,將各自的值代入即可求出值.
解答:解:∵AB=2,,
∴BC2=AB2+AC2,
∴A=,
∴BC為圓的直徑,O為斜邊BC的中點,
∴CO=BO=AO=BC=,又AC=,
設∠AOC=α,
由余弦定理得:cosα==,
=||•||cos(π-α)=××(-)=-
故選C
點評:此題考查了余弦定理,勾股定理的逆定理,直角三角形斜邊上的中線等于斜邊的一半,以及平面向量的數(shù)量積運算,熟練掌握定理及法則是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,已知三點A(-2,0)、B(2,0)C(1,
3
)
,△ABC的外接圓為圓,橢圓
x2
4
+
y2
2
=1
的右焦點為F.
(1)求圓M的方程;
(2)若點P為圓M上異于A、B的任意一點,過原點O作PF的垂線交直線x=2
2
于點Q,試判斷直線PQ與圓M的位置關系,并給出證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•佛山一模)已知A(-2,0),B(2,0),C(m,n).
(1)若m=1,n=
3
,求△ABC的外接圓的方程;
(2)若以線段AB為直徑的圓O過點C(異于點A,B),直線x=2交直線AC于點R,線段BR的中點為D,試判斷直線CD與圓O的位置關系,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A(0,1),B,C是x軸上兩點,且|BC|=6(B在C的左側).設△ABC的外接圓的圓心為M.
(Ⅰ)已知
AB
AC
=-4
,試求直線AB的方程;
(Ⅱ)當圓M與直線y=9相切時,求圓M的方程;
(Ⅲ)設|AB|=l1,|AC|=l2s=
l1
l2
+
l2
l1
,試求s的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•朝陽區(qū)一模)如圖,圓O是△ABC的外接圓,過點C作圓O的切線交BA的延長線于點D.若CD=
3
,AB=AC=2,則線段AD的長是
1
1
;圓O的半徑是
2
2

查看答案和解析>>

科目:高中數(shù)學 來源:2012年北京市房山區(qū)良鄉(xiāng)中學高三數(shù)學會考模擬試卷(4)(解析版) 題型:解答題

已知點A(0,1),B,C是x軸上兩點,且|BC|=6(B在C的左側).設△ABC的外接圓的圓心為M.
(Ⅰ)已知,試求直線AB的方程;
(Ⅱ)當圓M與直線y=9相切時,求圓M的方程;
(Ⅲ)設|AB|=l1,|AC|=l2,,試求s的最大值.

查看答案和解析>>

同步練習冊答案