【題目】設(shè)函數(shù),,(其中).

(1)時(shí),求函數(shù)的極值;

(2)證:存在,使得內(nèi)恒成立,且方程內(nèi)有唯一解.

【答案】(1) ;;(2)見(jiàn)解析.

【解析】

(Ⅰ)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值即可;

(Ⅱ)求出f(x)的導(dǎo)數(shù),通過(guò)討論m的范圍,求出f(x)的單調(diào)區(qū)間,求出滿足條件的m的范圍,從而證出結(jié)論即可.

解:(I)當(dāng)時(shí), ,

,,,當(dāng)變化時(shí),的變化如下表:

極大值

極小值

由表可知,;;

(II)設(shè),,,若要有解,需有單減區(qū)間,則要有解

,由,記為函數(shù)的導(dǎo)數(shù)

,當(dāng)時(shí)單增,令,由,得,需考察與區(qū)間的關(guān)系:

①當(dāng)時(shí),,,在單增,

單增,,無(wú)解;

②當(dāng),時(shí),,,因?yàn)?/span>單增,在,在

當(dāng)時(shí),

(i)若,即時(shí),,單增,,無(wú)解;

(ii)若,即,在上,,單減;,,在區(qū)間上有唯一解,記為;在上,單增 ,,當(dāng)時(shí),故在區(qū)間上有唯一解,記為,則在,在,在,當(dāng)時(shí),取得最小值,此時(shí)

若要恒成立且有唯一解,當(dāng)且僅當(dāng),即,由

聯(lián)立兩式解得.綜上,當(dāng)時(shí),

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】4月23人是“世界讀書(shū)日”,某中學(xué)在此期間開(kāi)展了一系列的讀書(shū)教育活動(dòng),為了解本校學(xué)生課外閱讀情況,學(xué)校隨機(jī)抽取了100名學(xué)生對(duì)其課外閱讀時(shí)間進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均課外閱讀時(shí)間(單位:分鐘)的頻率分布直方圖,若將日均課外閱讀時(shí)間不低于60分鐘的學(xué)生稱為“讀書(shū)謎”,低于60分鐘的學(xué)生稱為“非讀書(shū)謎”
(1)求x的值并估計(jì)全校3000名學(xué)生中讀書(shū)謎大概有多少?(經(jīng)頻率視為頻率)

非讀書(shū)迷

讀書(shū)迷

合計(jì)

15

45

合計(jì)


(2)根據(jù)已知條件完成下面2×2的列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為“讀書(shū)謎”與性別有關(guān)? 附:K2= n=a+b+c+d

P(K2≥k0

0.100

0.050

0.025

0.010

0.001

k0

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合為下述條件的函數(shù)的集合:①定義域?yàn)?/span>;②對(duì)任意實(shí)數(shù),都有

1)判斷函數(shù)是否為中元素,并說(shuō)明理由;

2)若函數(shù)是奇函數(shù),證明:;

3)設(shè)都是中的元素,求證:也是中的元素,并舉例說(shuō)明,不一定是中的元素.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,∠ABC=∠BAD=90℃,BC=2AD,△PAB與△PAD都是等邊三角形,平面ABCD⊥平面PBD.
(I)證明:CD⊥平面PBD;
(II)求二面角A﹣PD﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= ﹣kx2(k∈R)有四個(gè)不同的零點(diǎn),則實(shí)數(shù)k的取值范圍是(
A.k<0
B.k<1
C.0<k<1
D.k>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果函數(shù)y=f(x)的導(dǎo)函數(shù)的圖象如圖所示,給出下列判斷:

①函數(shù)y=f(x)在區(qū)間(-3,-1)內(nèi)單調(diào)遞增;②當(dāng)x=2時(shí),函數(shù)y=f(x)有極小值;

③函數(shù)y=f(x)在區(qū)間內(nèi)單調(diào)遞增;④當(dāng)時(shí),函數(shù)y=f(x)有極大值.

則上述判斷中正確的是(  )

A. ①② B. ②③ C. ③④ D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了得到函數(shù) 的圖象,只需將函數(shù)y=sin2x的圖象(
A.向右平移 個(gè)單位
B.向右平移 個(gè)單位
C.向左平移 個(gè)單位
D.向左平移 個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)= sin ,若存在f(x)的極值點(diǎn)x0滿足x02+[f(x0)]2<m2 , 則m的取值范圍是(
A.(﹣∞,﹣6)∪(6,+∞)
B.(﹣∞,﹣4)∪(4,+∞)
C.(﹣∞,﹣2)∪(2,+∞)
D.(﹣∞,﹣1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)分別為具有公共焦點(diǎn)的橢圓和雙曲線的離心率,為兩曲線的一個(gè)公共點(diǎn),且滿

,則的值為 ( )

A. B. 1 C. 2 D. 不確定

查看答案和解析>>

同步練習(xí)冊(cè)答案