【題目】紋樣是中國(guó)藝術(shù)寶庫(kù)的瑰寶,火紋是常見(jiàn)的一“種傳統(tǒng)紋樣.為了測(cè)算某火紋紋樣(如圖陰影部分所示)的面積,作一個(gè)邊長(zhǎng)為的正方形將其包含在內(nèi),并向該正方形內(nèi)隨機(jī)投擲個(gè)點(diǎn),已知恰有個(gè)點(diǎn)落在陰影部分,據(jù)此可估計(jì)陰影部分的面積是( )

A. B. C. D.

【答案】C

【解析】

分析:邊長(zhǎng)為5的正方形的面積S正方形=5×5=25,設(shè)陰影部分的面積為S,由幾何概型得,由此能估計(jì)陰影部分的面積.

詳解:為了測(cè)算某火紋紋樣(如圖陰影部分所示)的面積,作一個(gè)邊長(zhǎng)為5的正方形將其包含在內(nèi),

則邊長(zhǎng)為5的正方形的面積S正方形=5×5=25,

設(shè)陰影部分的面積為S,

該正方形內(nèi)隨機(jī)投擲1000個(gè)點(diǎn),已知恰有400個(gè)點(diǎn)落在陰影部分,

解得S=

估計(jì)陰影部分的面積是10.

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,直線

(Ⅰ)求證:直線與圓C恒有兩個(gè)交點(diǎn);

(Ⅱ)求出直線被圓C截得的最短弦長(zhǎng),并求出截得最短弦長(zhǎng)時(shí)的的值;

(Ⅲ)設(shè)直線與圓C的兩個(gè)交點(diǎn)為M,N,且(點(diǎn)C為圓C的圓心),求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)經(jīng)過(guò)一年的新農(nóng)村建設(shè),農(nóng)村的經(jīng)濟(jì)收入增加了一倍,實(shí)現(xiàn)翻番.為更好地了解該地區(qū)農(nóng)村的經(jīng)濟(jì)收入變化情況,統(tǒng)計(jì)了該地區(qū)新農(nóng)村建設(shè)前后農(nóng)村的經(jīng)濟(jì)收入構(gòu)成比例,得到如下餅圖,則下面結(jié)論中不正確的是( )

建設(shè)前經(jīng)濟(jì)收入構(gòu)成比例 建設(shè)后經(jīng)濟(jì)收入構(gòu)成比例

A. 新農(nóng)村建設(shè)后養(yǎng)殖收入增加了一倍

B. 新農(nóng)村建設(shè)后,其他收入增加了一倍以上

C. 新農(nóng)村建設(shè)后,種植收入減少

D. 新農(nóng)村建設(shè)后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的總和超過(guò)了經(jīng)濟(jì)收入的一半

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】”是“對(duì)任意的正數(shù), ”的( )

A. 充分不必要條件 B. 必要不充分條件 C. 充要條件 D. 既不充分也不必要條件

【答案】A

【解析】分析:根據(jù)基本不等式,我們可以判斷出”?“對(duì)任意的正數(shù)x,2x+≥1”對(duì)任意的正數(shù)x2x+≥1”?“a=

真假,進(jìn)而根據(jù)充要條件的定義,即可得到結(jié)論.

解答:解:當(dāng)“a=時(shí),由基本不等式可得:

對(duì)任意的正數(shù)x,2x+≥1”一定成立,

“a=”?“對(duì)任意的正數(shù)x2x+≥1”為真命題;

對(duì)任意的正數(shù)x2x+≥1時(shí),可得“a≥

對(duì)任意的正數(shù)x,2x+≥1”?“a=為假命題;

“a=對(duì)任意的正數(shù)x2x+≥1充分不必要條件

故選A

型】單選題
結(jié)束】
11

【題目】如圖,四棱錐中, 平面,底面為直角梯形, , ,點(diǎn)在棱上,且,則平面與平面的夾角的余弦值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】 ,則實(shí)數(shù)的取值范圍為__________

【答案】

【解析】當(dāng)m=0時(shí),符合題意。

當(dāng)m≠0時(shí), ,則0<m<4

0m<4

答案為: .

點(diǎn)睛:解本題的關(guān)鍵是處理二次函數(shù)在區(qū)間上大于0的恒成立問(wèn)題,對(duì)于二次函數(shù)的研究一般從以幾個(gè)方面研究:

一是,開(kāi)口;

二是,對(duì)稱軸,主要討論對(duì)稱軸與區(qū)間的位置關(guān)系;

三是,判別式,決定于x軸的交點(diǎn)個(gè)數(shù);

四是,區(qū)間端點(diǎn)值.

型】填空
結(jié)束】
15

【題目】已知橢圓 的右焦點(diǎn)為, 為直線上一點(diǎn),線段于點(diǎn),若,則__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,若的任何一條對(duì)稱軸與軸成交點(diǎn)的橫坐標(biāo)都不屬于區(qū)間,則的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若對(duì)于,恒成立,求實(shí)數(shù)的取值范圍;

(2)若對(duì)于,恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的對(duì)稱軸方程;

2)將函數(shù)的圖象上各點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,然后再向左平移個(gè)單位,得到函數(shù)的圖象.若, , 分別是三個(gè)內(nèi)角 , 的對(duì)邊, , ,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知矩形的長(zhǎng)為,寬為 、邊分別在軸、軸的正半軸上, 點(diǎn)與坐標(biāo)原點(diǎn)重合.將矩形折疊,是點(diǎn)落在線段.

Ⅰ)當(dāng)點(diǎn)落在中點(diǎn)時(shí),求折痕所在的直線方程.

Ⅱ)若折痕所在直線的斜率為,求折痕所在的直線方程與軸的交點(diǎn)坐標(biāo).(答案中可以出現(xiàn)

查看答案和解析>>

同步練習(xí)冊(cè)答案