【題目】紋樣是中國(guó)藝術(shù)寶庫(kù)的瑰寶,火紋是常見(jiàn)的一“種傳統(tǒng)紋樣.為了測(cè)算某火紋紋樣(如圖陰影部分所示)的面積,作一個(gè)邊長(zhǎng)為的正方形將其包含在內(nèi),并向該正方形內(nèi)隨機(jī)投擲個(gè)點(diǎn),已知恰有個(gè)點(diǎn)落在陰影部分,據(jù)此可估計(jì)陰影部分的面積是( )
A. B. C. D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,直線。
(Ⅰ)求證:直線與圓C恒有兩個(gè)交點(diǎn);
(Ⅱ)求出直線被圓C截得的最短弦長(zhǎng),并求出截得最短弦長(zhǎng)時(shí)的的值;
(Ⅲ)設(shè)直線與圓C的兩個(gè)交點(diǎn)為M,N,且(點(diǎn)C為圓C的圓心),求直線的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)經(jīng)過(guò)一年的新農(nóng)村建設(shè),農(nóng)村的經(jīng)濟(jì)收入增加了一倍,實(shí)現(xiàn)翻番.為更好地了解該地區(qū)農(nóng)村的經(jīng)濟(jì)收入變化情況,統(tǒng)計(jì)了該地區(qū)新農(nóng)村建設(shè)前后農(nóng)村的經(jīng)濟(jì)收入構(gòu)成比例,得到如下餅圖,則下面結(jié)論中不正確的是( )
建設(shè)前經(jīng)濟(jì)收入構(gòu)成比例 建設(shè)后經(jīng)濟(jì)收入構(gòu)成比例
A. 新農(nóng)村建設(shè)后,養(yǎng)殖收入增加了一倍
B. 新農(nóng)村建設(shè)后,其他收入增加了一倍以上
C. 新農(nóng)村建設(shè)后,種植收入減少
D. 新農(nóng)村建設(shè)后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的總和超過(guò)了經(jīng)濟(jì)收入的一半
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“”是“對(duì)任意的正數(shù), ”的( )
A. 充分不必要條件 B. 必要不充分條件 C. 充要條件 D. 既不充分也不必要條件
【答案】A
【解析】分析:根據(jù)基本不等式,我們可以判斷出“”?“對(duì)任意的正數(shù)x,2x+≥1”與“對(duì)任意的正數(shù)x,2x+≥1”?“a=
”真假,進(jìn)而根據(jù)充要條件的定義,即可得到結(jié)論.
解答:解:當(dāng)“a=”時(shí),由基本不等式可得:
“對(duì)任意的正數(shù)x,2x+≥1”一定成立,
即“a=”?“對(duì)任意的正數(shù)x,2x+≥1”為真命題;
而“對(duì)任意的正數(shù)x,2x+≥1的”時(shí),可得“a≥”
即“對(duì)任意的正數(shù)x,2x+≥1”?“a=”為假命題;
故“a=”是“對(duì)任意的正數(shù)x,2x+≥1的”充分不必要條件
故選A
【題型】單選題
【結(jié)束】
11
【題目】如圖,四棱錐中, 平面,底面為直角梯形, , , ,點(diǎn)在棱上,且,則平面與平面的夾角的余弦值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若, ,則實(shí)數(shù)的取值范圍為__________.
【答案】
【解析】當(dāng)m=0時(shí),符合題意。
當(dāng)m≠0時(shí), ,則0<m<4,
則0m<4
答案為: .
點(diǎn)睛:解本題的關(guān)鍵是處理二次函數(shù)在區(qū)間上大于0的恒成立問(wèn)題,對(duì)于二次函數(shù)的研究一般從以幾個(gè)方面研究:
一是,開(kāi)口;
二是,對(duì)稱軸,主要討論對(duì)稱軸與區(qū)間的位置關(guān)系;
三是,判別式,決定于x軸的交點(diǎn)個(gè)數(shù);
四是,區(qū)間端點(diǎn)值.
【題型】填空題
【結(jié)束】
15
【題目】已知橢圓: 的右焦點(diǎn)為, 為直線上一點(diǎn),線段交于點(diǎn),若,則__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,若的任何一條對(duì)稱軸與軸成交點(diǎn)的橫坐標(biāo)都不屬于區(qū)間,則的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若對(duì)于,恒成立,求實(shí)數(shù)的取值范圍;
(2)若對(duì)于,恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的對(duì)稱軸方程;
(2)將函數(shù)的圖象上各點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,然后再向左平移個(gè)單位,得到函數(shù)的圖象.若, , 分別是△三個(gè)內(nèi)角, , 的對(duì)邊, , ,且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知矩形的長(zhǎng)為,寬為, 、邊分別在軸、軸的正半軸上, 點(diǎn)與坐標(biāo)原點(diǎn)重合.將矩形折疊,是點(diǎn)落在線段上.
(Ⅰ)當(dāng)點(diǎn)落在中點(diǎn)時(shí),求折痕所在的直線方程.
(Ⅱ)若折痕所在直線的斜率為,求折痕所在的直線方程與軸的交點(diǎn)坐標(biāo).(答案中可以出現(xiàn))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com