【題目】在研究吸煙與患肺癌的關(guān)系中,通過收集數(shù)據(jù)、整理分析數(shù)據(jù)得“吸煙與患肺癌有關(guān)”的結(jié)論,并且在犯錯誤的概率不超過0.01的前提下認(rèn)為這個結(jié)論是成立的,下列說法中正確的是( )
A.100個吸煙者中至少有99人患有肺癌
B.1個人吸煙,那么這個人有99%的概率患有肺癌
C.在100個吸煙者中一定有患肺癌的人
D.在100個吸煙者中可能一個患肺癌的人也沒有
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,曲線C的極坐標(biāo)方程為.
(1)求曲線的普通方程和的直角坐標(biāo)方程;
(2)設(shè)分別交于點,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:k2﹣8k﹣20≤0,命題q:方程1表示焦點在x軸上的雙曲線.
(1)命題q為真命題,求實數(shù)k的取值范圍;
(2)若命題“p∨q”為真,命題“p∧q”為假,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,其中常數(shù).
(1)當(dāng)時,求函數(shù)的極值;
(2)若函數(shù)有兩個零點,求證: ;
(3)求證: .
選做題:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦點在x軸上,中心在坐標(biāo)原點,離心率,橢圓上的點到左焦點的距離的最大值為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓的右焦點F作與坐標(biāo)軸不垂直的直線l,交橢圓于A、B兩點,設(shè)點是線段OF上的一個動點,且,求m的取值范圍;
(3)設(shè)點C是點A關(guān)于x軸的對稱點,在x軸上是否存在一個定點N,使得C、B、N三點共線?若存在,求出定點N的坐標(biāo),若不存在,請說明理由;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某老小區(qū)建成時間較早,沒有集中供暖,隨著人們生活水平的日益提高熱力公司決定在此小區(qū)加裝暖氣該小區(qū)的物業(yè)公司統(tǒng)計了近五年(截止2018年年底)小區(qū)居民有意向加裝暖氣的戶數(shù),得到如下數(shù)據(jù)
年份編號x | 1 | 2 | 3 | 4 | 5 |
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
加裝戶數(shù)y | 34 | 95 | 124 | 181 | 216 |
(Ⅰ)若有意向加裝暖氣的戶數(shù)y與年份編號x滿足線性相關(guān)關(guān)系求y與x的線性回歸方程并預(yù)測截至2019年年底,該小區(qū)有多少戶居民有意向加裝暖氣;
(Ⅱ)2018年年底鄭州市民生工程決定對老舊小區(qū)加裝暖氣進行補貼,該小區(qū)分到120個名額物業(yè)公司決定在2019年度采用網(wǎng)絡(luò)競拍的方式分配名額,競拍方案如下:①截至2018年年底已登記在冊的居民擁有競拍資格;②每戶至多申請一個名額,由戶主在競拍網(wǎng)站上提出申請并給出每平方米的心理期望報價;③根據(jù)物價部門的規(guī)定,每平方米的初裝價格不得超過300元;④申請階段截止后,將所有申請居民的報價自高到低排列,排在前120位的業(yè)主以其報價成交;⑤若最后出現(xiàn)并列的報價,則認(rèn)為申請時問在前的居民得到名額,為預(yù)測本次競拍的成交最低價,物業(yè)公司隨機抽取了有競拍資格的50位居民進行調(diào)查統(tǒng)計了他們的擬報競價,得到如圖所示的頻率分布直方圖:
(1)求所抽取的居民中擬報競價不低于成本價180元的人數(shù);
(2)如果所有符合條件的居民均參與競拍,請你利用樣本估計總體的思想預(yù)測至少需要報價多少元才能獲得名額(結(jié)果取整數(shù))
參考公式對于一組數(shù)據(jù)(x1,y1),(x2,y2),(x3,y3),…(xn,yn),其回歸直線的斜率和截距的最小二乘估計分別為,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,曲線的極坐標(biāo)方程為.現(xiàn)以極點為原點,極軸為軸的非負半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為(為參數(shù)).
(1)求曲線的直角坐標(biāo)系方程和直線的普通方程;
(2)點在曲線上,且到直線的距離為,求符合條件的點的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】材料一:2018年,全國逾半省份將從秋季入學(xué)的高一年級開始實行新的學(xué)業(yè)水平考試和高考制度.所有省級行政區(qū)域均突破文理界限,由學(xué)生跨文理選科,均設(shè) 置“”的考試科目.前一個“3”為必考科目,為統(tǒng)一高考科目語文、數(shù)學(xué)、外語.除個別省級行政區(qū)域仍執(zhí)行教育部委托的分省命題任務(wù)外,絕大部分省級行政區(qū)域均由教育部考試中心統(tǒng)一命題;后一個“3”為高中學(xué)業(yè)水平考試(簡稱“學(xué)考”)選考科目,由各省級行政區(qū)域自主命題.材料二:2019年4月,河北、遼寧、江蘇、福建、湖北、湖南、廣東、重慶等8省市發(fā)布高考綜合改革實施方案,方案決定從2018年秋季入學(xué)的高中一年級學(xué)生開始實施高考綜合改革.考生總成績由全國統(tǒng)一高考的語文、數(shù)學(xué)、外語3個科目成績和考生選擇的3科普通高中學(xué)業(yè)水平選擇性考試科目成績組成,滿分為750分.即通常所說的“”模式,所謂“”,即“3”是三門主科,分別是語文、數(shù)學(xué)、外語,這三門科目是必選的.“1”指的是要在物理、歷史里選一門,按原始分計入成績.“2”指考生要在生物、化學(xué)、思想政治、地理4門中選擇2門.但是這幾門科目不以原始分計入成績,而是等級賦分.等級賦分指的是把考生的原始成績根據(jù)人數(shù)的比例分為、、、、五個等級,五個等級分別對應(yīng)著相應(yīng)的分?jǐn)?shù)區(qū)間,然后再用公式換算,轉(zhuǎn)換得出分?jǐn)?shù).
(1)若按照“”模式選科,求選出的六科中含有“語文,數(shù)學(xué),外語,物理,化學(xué)”的概率.
(2)某教育部門為了調(diào)查學(xué)生語數(shù)外三科成績與選科之間的關(guān)系,現(xiàn)從當(dāng)?shù)夭煌瑢哟蔚膶W(xué)校中抽取高一學(xué)生2500名參加語數(shù)外的網(wǎng)絡(luò)測試,滿分450分,并給前400名頒發(fā)榮譽證書,假設(shè)該次網(wǎng)絡(luò)測試成績服從正態(tài)分布,且滿分為450分;
①考生甲得知他的成績?yōu)?/span>270分,考試后不久了解到如下情況:“此次測試平均成績?yōu)?/span>171分,351分以上共有57人”,問甲能否獲得榮譽證書,請說明理由;
②考生丙得知他的實際成績?yōu)?/span>430分,而考生乙告訴考生丙:“這次測試平均成績?yōu)?/span>201分,351分以上共有57人”,請結(jié)合統(tǒng)計學(xué)知識幫助丙同學(xué)辨別乙同學(xué) 信息的真?zhèn)危?/span>
附:;;.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為解決城市的擁堵問題,某城市準(zhǔn)備對現(xiàn)有的一條穿城公路進行分流,已知穿城公路自西向東到達城市中心后轉(zhuǎn)向方向,已知,現(xiàn)準(zhǔn)備修建一條城市高架道路,在上設(shè)一出入口,在上設(shè)一出口,假設(shè)高架道路在部分為直線段,且要求市中心與的距離為.
(1)若,求兩站點之間的距離;
(2)公路段上距離市中心處有一古建筑群,為保護古建筑群,設(shè)立一個以為圓心,為半徑的圓形保護區(qū).因考慮未來道路的擴建,則如何在古建筑群和市中心之間設(shè)計出入口,才能使高架道路及其延伸段不經(jīng)過保護區(qū)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com