【題目】如圖,在四棱錐PABCD中,PB⊥平面ABCD,ABBCADBC,AD2BC2,ABBCPB,點E為棱PD的中點.

1)求證:CE∥平面PAB;

2)求證:AD⊥平面PAB;

3)求二面角EACD的余弦值.

【答案】1)證明見解析(2)證明見解析(3

【解析】

1)取PA中點F,連接EFBF,因為EPD中點,FPA中點,證明四邊形BCEF為平行四邊形,得到CEBF,然后證明CE∥平面PAB.

2)證明PBAD,ADAB,然后證明AD⊥平面PAB.

3)以B為原點,如圖建立空間直角坐標系Bxyz,求出平面ACD的一個法向量,平面ACE的一個法向量,結(jié)合二面角EACD為銳角,通過空間向量的數(shù)量積求解二面角EACD的余弦值即可.

證明:(1)取PA中點F,連接EF,BF,因為EPD中點,FPA中點,

所以EFAD,且

又因為BCAD,且

所以EFBC,且EFBC

所以四邊形BCEF為平行四邊形,

所以CEBF,

因為CE平面PAB,BF平面PAB

所以CE∥平面PAB.

2)因為PB⊥平面ABCD,AD平面ABCD

所以PBAD

又因為ABBC,ADBC

所以ADAB,

ABPBB,AB、PB平面PAB

所以AD⊥平面PAB.

3)因為PB⊥平面ABCD,AB、BC平面ABCD

所以PBAB,PBBC,又ABBC,

B為原點,如圖建立空間直角坐標系Bxyz

所以

已知平面ACD的一個法向量;

設平面ACE的法向量

,即,

x1,則y1,z=﹣1

所以平面ACE的一個法向量為

所以

由圖可知二面角EACD為銳角,

所以二面角EACD的余弦值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某購物網(wǎng)站開展一種商品的預約購買,規(guī)定每個手機號只能預約一次,預約后通過搖號的方式?jīng)Q定能否成功購買到該商品.規(guī)則如下:(ⅰ)搖號的初始中簽率為;(ⅱ)當中簽率不超過時,可借助“好友助力”活動增加中簽率,每邀請到一位好友參與“好友助力”活動可使中簽率增加.為了使中簽率超過,則至少需要邀請________位好友參與到“好友助力”活動.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),的導函數(shù).

1)若,求處的切線方程;

2)若可上單調(diào)遞增,求的取值范圍;

3)求證:當在區(qū)間內(nèi)存在唯一極大值點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知.

(1)當時,求函數(shù)圖象在處的切線方程;

(2)若對任意,不等式恒成立,求的取值范圍;

(3)若存在極大值和極小值,且極大值小于極小值,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線lymx2+2與圓Cx2+y29交于A,B兩點,則使弦長|AB|為整數(shù)的直線l共有(

A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線的參數(shù)方程為為參數(shù)),,為曲線上的一動點.

(I)求動點對應的參數(shù)從變動到時,線段所掃過的圖形面積;

(Ⅱ)若直線與曲線的另一個交點為,是否存在點,使得為線段的中點?若存在,求出點坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線C1的參數(shù)方程為t為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ16cosθ.

1)把曲線C2的極坐標方程化為直角坐標方程;

2)求C1C2交點的直角坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的導函數(shù)是偶函數(shù),若方程在區(qū)間(其中為自然對數(shù)的底)上有兩個不相等的實數(shù)根,則實數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】過點的動直線ly軸交于點,過點T且垂直于l的直線與直線相交于點M.

1)求M的軌跡方程;

2)設M位于第一象限,以AM為直徑的圓y軸相交于點N,且,求的值.

查看答案和解析>>

同步練習冊答案