已知函數(shù)f(x)是定義在[1-2a,a]上的奇函數(shù),則a=
 
考點:函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由于奇函數(shù)的定義域必然關(guān)于原點對稱,可得a=2a-1,即可求出a的值.
解答: 解:由于奇函數(shù)的定義域必然關(guān)于原點對稱,由已知必有a=2a-1,得a=1.
故答案為:1.
點評:本題主要考查函數(shù)的奇偶性的判斷,利用了奇函數(shù)的定義域必然關(guān)于原點對稱,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合U={x|-3≤x≤3},N={x|0<x<2},M={x|-kx<2},那么集合∁U(M∩N)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某人有n把鑰匙,其中一把是開門的,現(xiàn)隨機取一把,取后不放回,則第k次能打開門的概率是
 
若取后放回,則第k次能打開門的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某文藝團體下基層進行宣傳演出原準備的節(jié)目表中有6個節(jié)目,如果保持這些的相對順序不變,在它們之間再插入2個小品節(jié)目,并且這兩個小品節(jié)目在節(jié)目表中既不排在排頭也不排在排尾,有
 
種不同的插入方法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:|2x-1|≥1,命題q:
1
x2+4x-5
>0,則?p是?q的
 
條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:f′(x)是函數(shù)f(x)的導(dǎo)函數(shù),f(x)是f′(x)的導(dǎo)函數(shù),若方程f(x)=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的“拐點”.某同學(xué)經(jīng)研究發(fā)現(xiàn):任何一個三次函數(shù)都有“拐點”;任何一個三次函數(shù)都有對稱中心,且拐點就是對稱中心. 若f(x)=
1
3
x3-
1
2
x2+3x-
5
12
,請你根據(jù)這一發(fā)現(xiàn),求:
(1)函數(shù)f(x)=
1
3
x3-
1
2
x2+3x-
5
12
的對稱中心為
 
;
(2)f(
1
2016
)+f(
2
2016
)+…+f(
2015
2016
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一組共10名同學(xué)在某次數(shù)學(xué)測驗中4名男生成績的平均分和標準差分別為:90,5;6名女生成績的平均分和標準差分別:80,4,則這組同學(xué)數(shù)學(xué)成績的標準差為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列3,33,333,3333,…的一個通項公式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)x、y滿足不等式組
y≥0
x-y≥0
2x-y-2≥0
,則x2+y2的最大值是
 

查看答案和解析>>

同步練習(xí)冊答案