一般來說,一個人腳掌越長,他的身高就越高,現(xiàn)對10名成年人的腳掌長與身高進行測量,得到數(shù)據(jù)(單位均為)如表,作出散點圖后,發(fā)現(xiàn)散點在一條直線附近,經(jīng)計算得到一些數(shù)據(jù):,;某刑偵人員在某案發(fā)現(xiàn)場發(fā)現(xiàn)一對裸腳印,量得每個腳印長為,則估計案發(fā)嫌疑人的身高為
    
腳長
20
21
22
23
24
25
26
27
28
29
身高
141
146
154
160
169
176
181
188
197
203
185.5

試題分析:回歸方程的斜率,,,截距,即回歸方程為,當,
點評:回歸直線方程過樣本點中心,這條性質(zhì)要牢固掌握,靈活應用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題12分)為了研究化肥對小麥產(chǎn)量的影響,某科學家將一片土地劃分成200個的小塊,并在100個小塊上施用新化肥,留下100個條件大體相當?shù)男K不施用新化肥.下表1和表2分別是施用新化肥和不施用新化肥的小麥產(chǎn)量頻數(shù)分布表(小麥產(chǎn)量單位:kg)
表1:施用新化肥小麥產(chǎn)量頻數(shù)分布表
小麥產(chǎn)量





頻數(shù)
10
35
40
10
5
表2:不施用新化肥小麥產(chǎn)量頻數(shù)分布表
小麥產(chǎn)量




頻數(shù)
15
50
30
5
(10)     完成下面頻率分布直方圖;

(2)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表,據(jù)此估計施用化肥和不施用化肥的一小塊土地的小麥平均產(chǎn)量;
(3)完成下面2×2列聯(lián)表,并回答能否有99.5%的把握認為“施用新化肥和不施用新化肥的小麥產(chǎn)量有差異”
表3:
 
小麥產(chǎn)量小于20kg
小麥產(chǎn)量不小于20kg
合計
施用新化肥


 
不施用新化肥


 
合計
 
 

 
附:

0.050
0.010
0.005
0.001

3.841
6.635
7.879
10.828
 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

正定中學教學處采用系統(tǒng)抽樣方法,從學校高三年級全體800名學生中抽50名學生做學習狀況問卷調(diào)查,F(xiàn)將800名學生從1到800進行編號,在中隨機抽取一個數(shù),如果抽到的是7,則從中應取的數(shù)是         

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某校從參加某次知識競賽的同學中,選取60名同學將其成績(百分制,均為整數(shù))分成6組后,得到部分頻率分布直方圖(如圖),觀察圖中的信息,回答下列問題.

(Ⅰ)求分數(shù)在[70,80)內(nèi)的頻率,并補全這個頻率分布直方圖;
(Ⅱ)根據(jù)頻率分布直方圖,估計本次考試的平均分;
(Ⅲ)若從60名學生中隨機抽取2人,抽到的學生成績在[40,70)記0分,記[70,100]記1分,用X表示抽取結(jié)束后的總記分,求X的分布列和數(shù)學期望。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在對某樣本進行實驗時,測得如下數(shù)據(jù):則之間的回歸直線方程為( 。

2
1
4
3

3
2
5
4
A、   B、   C、   D、

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

一組數(shù)據(jù),,,,的極差是7,那么的值是           .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

隨機抽取某中學甲、乙兩面?zhèn)班10名同學,測量他們的身高(單位:cm)后獲得身高數(shù)據(jù)的莖葉圖如圖甲所示,在這20人中,記身高在內(nèi)的人數(shù)依次為,圖乙是統(tǒng)計樣本中身高在一定范圍內(nèi)的人數(shù)的算法流程圖,則下列說法正確的是(  )
 
A.由圖甲可知甲、乙兩班中身高的中位數(shù)較大的是甲班,圖乙輸出的S的值為18
B.由圖甲可知甲、乙兩班中身高的中位數(shù)較大的是乙班,圖乙輸出的S的值為18
C.由圖甲可知甲、乙兩班中身高的中位數(shù)較大的是乙班,圖乙輸出的S的值為16
D.由圖甲可知甲、乙兩班中身高的中位數(shù)較大的是甲班,圖乙輸出的S的值為16

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
某大學高等數(shù)學老師上學期分別采用了兩種不同的教學方式對甲、乙兩個大一新生班進行教改試驗(兩個班人數(shù)均為60人,入學數(shù)學平均分數(shù)和優(yōu)秀率都相同;勤奮程度和自覺性都一樣),F(xiàn)隨機抽取甲、乙兩班各20名同學的上學期數(shù)學期末考試成績,得到莖葉圖如下:

(Ⅰ)依莖葉圖判斷哪個班的平均分高?
(Ⅱ)從乙班這20名同學中隨機抽取兩名高等數(shù)學成績不得低于85分的同學,求成績?yōu)?0分的同學被抽中的概率;
(Ⅲ)學校規(guī)定:成績不低于85分的為優(yōu)秀,請?zhí)顚懴旅娴?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824004625723371.png" style="vertical-align:middle;" />列聯(lián)表,并判斷“能否在犯錯誤的概率不超過0.025的前提下認為成績優(yōu)秀與教學方式有關(guān)?”
 
甲班
乙班
合計
優(yōu)秀
 
 
 
不優(yōu)秀
 
 
 
合計
 
 
 
下面臨界值表僅供參考:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
(參考公式:其中) 
(Ⅳ)從乙班高等數(shù)學成績不低于85分的同學中抽取2人,成績不低于90分的同學得獎金100元,否則得獎金50元,記為這2人所得的總獎金,求的分布列和數(shù)學期望。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
甲、乙兩臺機床生產(chǎn)同一型號零件.記生產(chǎn)的零件的尺寸為(cm),相關(guān)行業(yè)質(zhì)檢部門規(guī)定:若,則該零件為優(yōu)等品;若,則該零件為中等品;其余零件為次品.現(xiàn)分別從甲、乙機床生產(chǎn)的零件中各隨機抽取50件,經(jīng)質(zhì)量檢測得到下表數(shù)據(jù):
尺寸






甲機床零件頻數(shù)
2
3
20
20
4
1
乙機床零件頻數(shù)
3
5
17
13
8
4
(Ⅰ)設生產(chǎn)每件產(chǎn)品的利潤為:優(yōu)等品3元,中等品1元,次品虧本1元. 若將頻率視為概率,試根據(jù)樣本估計總體的思想,估算甲機床生產(chǎn)一件零件的利潤的數(shù)學期望;
(Ⅱ)對于這兩臺機床生產(chǎn)的零件,在排除其它因素影響的情況下,試根據(jù)樣本估計總體的思想,估計約有多大的把握認為“零件優(yōu)等與否和所用機床有關(guān)”,并說明理由.
參考公式:.
參考數(shù)據(jù):

0.25
0.15
0.10
0.05
0.025
0.010

1.323
2.072
2.706
3.841
5.024
6.635
 

查看答案和解析>>

同步練習冊答案