16.已知向量$\overrightarrow{a}$=($\sqrt{3}$cosωx,1),$\overrightarrow$=(sinωx,cos2ωx-$\frac{1}{2}$)(ω>0),函數(shù)f(x)=$\overrightarrow{a}•\overrightarrow$,若函數(shù)f(x)的圖象的一條對稱軸與它相鄰的一個對稱中心的距離為$\frac{π}{4}$.
(1)求f(x)的表達式;
(2)將函數(shù)f(x)的圖象向右平移$\frac{π}{4}$個單位,再將各點的橫坐標縮短到原來的$\frac{1}{2}$(縱坐標不變),得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)在區(qū)間$[0,\frac{π}{4}]$上的最大值和最小值.

分析 (1)利用向量的數(shù)量積公式,結合二倍角、輔助角公式,根據(jù)函數(shù)f(x)圖象的一個對稱中心與它相鄰的一條對稱軸之間的距離為$\frac{π}{4}$,即可求函數(shù)f(x)的解析式.
(2)根據(jù)圖象的平移和正弦函數(shù)的圖象的性質(zhì)即可得出結論.

解答 解:(1)$f(x)=\sqrt{3}sinωxcosωx+{cos^2}ωx-\frac{1}{2}$=$\frac{{\sqrt{3}}}{2}sin2ωx+\frac{cos2ωx+1}{2}-\frac{1}{2}$.
由題意知f(x)的最小正周期T=$\frac{2π}{2ω}$=$\frac{π}{ω}$=π,所以ω=1,
所以f(x)=sin(2x+$\frac{π}{6}$).
(2)將f(x)的圖象向右平移$\frac{π}{4}$個單位后,得到y(tǒng)=sin[2(x-$\frac{π}{4}$)+$\frac{π}{4}$]=sin(2x-$\frac{π}{3}$)
的圖象,再將所得圖象上所有點的橫坐標縮短到原來的$\frac{1}{2}$,縱坐標不變,得到$y=sin(4x-\frac{π}{3})$的圖象,
所以g(x)=sin(4x-$\frac{π}{3}$),
因為$0≤x≤\frac{π}{4}$,所以$-\frac{π}{3}≤4x-\frac{π}{3}≤\frac{2π}{3}$.由正弦函數(shù)的圖象得可知$-\frac{{\sqrt{3}}}{2}≤g(x)≤1$.
所以g(x)在區(qū)間$[0,\frac{π}{4}]$上最大值為1和最小值為$-\frac{{\sqrt{3}}}{2}$.

點評 本題主要考查了函數(shù)y=Asin(ωx+φ)的圖象變換,三角函數(shù)恒等變換的應用,周期公式,正弦函數(shù)的圖象和性質(zhì),考查了計算能力和轉(zhuǎn)化思想,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

6.以橢圓$C:\frac{y^2}{a^2}+\frac{x^2}{b^2}=1(a>b>0)$的中心O為圓心,以$\sqrt{\frac{ab}{2}}$為半徑的圓稱為該橢圓的“伴隨”.已知橢圓的離心率為$\frac{{\sqrt{3}}}{2}$,拋物線x2=8y的準線過此橢圓的一個頂點.
(Ⅰ) 求橢圓C及其“伴隨”的方程;
(Ⅱ)斜率為1的直線m經(jīng)過拋物線x2=8y的焦點F,且與拋物線交于M,N兩點,求線段MN的長度;
(Ⅲ) 過點P(0,m)作“伴隨”的切線l交橢圓C于A,B兩點,若$\overrightarrow{OA}•\overrightarrow{OB}=\frac{2}{5}$,求切線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.9粒種子分種在3個坑內(nèi),每坑3粒,每粒種子發(fā)芽的概率為0.5,若一個坑內(nèi)至少有1粒種子發(fā)芽,則這個坑不需要補種,若一個坑內(nèi)的種子都沒發(fā)芽,則這個坑需要補種.假定每個坑至多補種一次,每補種1個坑需10元,用ξ表示補種費用,則ξ的數(shù)學期望值等于3.75.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.若a2-ab+b2=1,a,b是實數(shù),則a+b的最大值是2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知a,b,c為圓O上的三點,若$\overrightarrow{OA}=\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$,|$\overrightarrow{AB}$|=3,|$\overrightarrow{AC}$|=4,則|$\overrightarrow{AO}$|=$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.用數(shù)學歸納法證明(x+1)n+1+(x+2)2n-1(n∈N*)能被x2+3x+3 整除.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知點A(1,1),B(-2,2),則向量$\overrightarrow{OA}$與$\overrightarrow{BO}$的夾角為( 。 (其中O為坐標原點)
A.30°B.90°C.60°D.120°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.有四個游戲盤,如圖所示,(其中A的外形為正方形;B的外形為正六邊形;C的外形為正方形;D.的外形為圓,D.的陰影部分為等腰直角三角形)撒一粒黃豆到游戲盤,如果落在陰影部分,則可中獎.你希望中獎機會大,你應當選擇的游戲盤為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖所示,四棱錐P-ABCD中,PA=PB=PC=PD,AB=a,O為底面正方形的中心,側棱PA與底面ABCD所成的角的正切值為$\frac{{\sqrt{6}}}{2}$.
(1)求側面PAD與底面ABCD所成的二面角的大小;
(2)若E是PB的中點,求異面直線PD與AE所成角的正切值.

查看答案和解析>>

同步練習冊答案