設(shè)變量x,y滿足約束條件則23x-y的取值范圍是( )
A.
B.
C.
D.
【答案】分析:作出不等式組表示的平面區(qū)域;作出目標(biāo)函數(shù)對應(yīng)的直線;結(jié)合圖象根據(jù)截距的大小進(jìn)行判斷,先設(shè)出目標(biāo)函數(shù)z=3x-y的取值范圍,最后根據(jù)指數(shù)函數(shù)的性質(zhì)即可得出23x-y的取值范圍.
解答:解:∵變量x,y滿足約束條件

設(shè)目標(biāo)函數(shù)為:z=3x-y,
直線4x-y+1=0與x+2y-2=0交于點A(0,1),
直線2x+y-4=0與x+2y-2=0交于點C(2,0),
直線4x-y+1=0與2x+y-4=0交于點B( ,3),
分析可知z在點B處取得最小值,zmin=3×-1=-
z在點C處取得最大值,zmax=3×2-0=6,
∴-≤3x-y≤6,
≤23x-y≤64.
故選C.
點評:本題考查畫不等式組表示的平面區(qū)域、考查數(shù)形結(jié)合求函數(shù)的最值.解題的關(guān)鍵是準(zhǔn)確理解目標(biāo)函數(shù)的幾何意義.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x,y滿足約束條件
y≤2
3
x-3y≤0
x+
3
y-2
3
≥0
,則目標(biāo)函數(shù)u=x2+y2的最大值M與最小值N的比
M
N
=( 。
A、
4
3
3
B、
16
3
3
C、
4
3
D、
16
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x,y滿足約束條件
x+y≥2
x≤1
y≤2
,則目標(biāo)函數(shù)z=-x+y的最大值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•河西區(qū)一模)設(shè)變量x、y滿足約束條件
y≥0
x-y+1≥0
x+y-3≤0
,則z=2x+y的最大值為
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理科)設(shè)變量x,y滿足約束條件
2x-y≤0
x-3y+5≥0
x≥0
,則目標(biāo)函數(shù)z=x-y的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•江西模擬)設(shè)變量x,y滿足約束條件
x+1≥0
x-y+1≤0
x+y-2≤0
,則z=4x+y的最大值為( 。

查看答案和解析>>

同步練習(xí)冊答案