6.已知集合 A={x|-2<x<3},B={x|-1<x<4},則A∩B=( 。
A.{x|-1<x<3}B.{x|0≤x≤2}C.{0,1,2}D.{0,1,2,3}

分析 利用交集定義直接求解.

解答 解:∵集合 A={x|-2<x<3},B={x|-1<x<4},
∴A∩B={x|-1<x<3}.
故選:A.

點評 本題考查交集的求法,是基礎(chǔ)題,解題時要認真審題,注意交集性質(zhì)的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

9.如圖一塊長方形區(qū)域ABCD,AD=2,AB=1,在邊AD的中點O處有一個可轉(zhuǎn)動
的探照燈,其照射角∠EOF始終為$\frac{π}{4}$,設(shè)∠AOE=α,探照燈照射在長方形ABCD內(nèi)部區(qū)域的面積為S;
(1)當$0≤α<\frac{π}{2}$時,求S關(guān)于α的函數(shù)關(guān)系式;
(2)當$0≤α≤\frac{π}{4}$時,求S的最大值;
(3)若探照燈每9分鐘旋轉(zhuǎn)“一個來回”(OE自O(shè)A轉(zhuǎn)到OC,再回到OA,稱“一個來
回”,忽略O(shè)E在OA及OC處所用的時間),且轉(zhuǎn)動的角速度大小一定,設(shè)AB邊上有一點G,且$∠AOG=\frac{π}{6}$,求點G在“一個來回”中被照到的時間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.函數(shù)f(x)的圖象如圖所示,曲線BCD為拋物線的一部分.
(Ⅰ)求f(x)解析式; 
(Ⅱ)若f(x)=1,求x的值;
(Ⅲ)若f(x)>f(2-x),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,在四面體ABCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2$\sqrt{2}$,P,Q分別是線段AB與CD的中點.
(Ⅰ)求證:PQ⊥CD;
(Ⅱ)若DC=BC,線段BD上是否存在點E,使得平面PQE與平面ABC所成的為二面角為直二面角?若存在,確定點E的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1..設(shè)數(shù)列{an}滿足a2+a4=12,點pn(n,an)對任意的n∈N+,都有$\overline{{p_n}{p_{n+1}}}=(1,2)•$
(1)求數(shù)列{an}的通項公式an
(2)若數(shù)列{bn}滿足an=log2(bn+2),求數(shù)列$\{\frac{4^n}{{{b_n}{b_{n+1}}}}\}$的前n項和Tn,并證明$\frac{1}{7}≤{T_n}<\frac{1}{6}•$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.在[-4,3]上隨機取一個實數(shù)m,能使函數(shù)f(x)=x2+$\sqrt{2}$mx+2,在R上有零點的概率為(  )
A.$\frac{2}{7}$B.$\frac{3}{7}$C.$\frac{4}{7}$D.$\frac{5}{7}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.在直角坐標系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=\sqrt{3}+tcosα\\ y=2+tsinα\end{array}\right.(t$是參數(shù)),以原點O為極點,x軸正半軸為極軸建立極坐標系,C2曲線的極坐標方程為ρ2=4$\sqrt{2}$ρsin($θ+\frac{π}{4}$)-4.
(1)求曲線C2的直角坐標方程,并指出其表示何種曲線;
(2)若曲線C1與曲線C2交于A,B兩點,求|AB|的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.三次函數(shù)f(x)=ax3+bx2+cx+d的圖象如圖,則它的導函數(shù)f′(x)的圖象最可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.z=2+i(i為虛數(shù)單位),則$\frac{{z+2{i}}}{z-1}$=(  )
A.$\frac{5}{2}+\frac{i}{2}$B.$\frac{5}{2}-\frac{i}{2}$C.5+iD.5-i

查看答案和解析>>

同步練習冊答案