對
,定義運算“
”、“
”為:
給出下列各式
①
,②
,
③
, ④
.
其中等式恒成立的是
.(將所有恒成立的等式的序號都填上)
試題分析:因為在三角函數(shù)中,
成立,當
也成立,因此滿足題意。
命題2中,當
因此
不成立。
命題4中,
也不成立。
命題3中,成立。
點評:結(jié)合三角函數(shù)中正弦與余弦的大小關系,以及指數(shù)函數(shù)與二次函數(shù)的大小關系來判定得到運算結(jié)果,進而確定是否成立,屬于創(chuàng)新試題,中檔題。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:單選題
下列說法中
① 若定義在
R上的函數(shù)
滿足
,則6為函數(shù)
的周期;
② 若對于任意
,不等式
恒成立,則
;
③ 定義:“若函數(shù)
對于任意
R,都存在正常數(shù)
,使
恒成立,則稱函數(shù)
為有界泛函.”由該定義可知,函數(shù)
為有界泛函;
④對于函數(shù)
設
,
,…,
(
且
),令集合
,則集合
為空集.正確的個數(shù)為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
函數(shù)
的值域是
;
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知
是由滿足下述條件的函數(shù)構成的集合:對任意
,
① 方程
有實數(shù)根;② 函數(shù)
的導數(shù)
滿足
.
(Ⅰ)判斷函數(shù)
是否是集合
中的元素,并說明理由;
(Ⅱ)集合
中的元素
具有下面的性質(zhì):若
的定義域為
,則對于任意
,都存在
,使得等式
成立.試用這一性質(zhì)證明:方程
有且只有一個實數(shù)根;
(Ⅲ)對任意
,且
,求證:對于
定義域中任意的
,
,
,當
,且
時,
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
。
(1)若
,求a的值;
(2)若a>1,求函數(shù)f(x)的單調(diào)區(qū)間與極值點;
(3)設函數(shù)
是偶函數(shù),若過點A(1,m)
可作曲線y=f(x)的三條切線,求實數(shù)m的范圍。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
若
,則函數(shù)
的解集是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分12分)已知函數(shù)
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)
a為何值時,方程
有三個不同的實根.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設函數(shù)
定義在實數(shù)集R上,
,且當
時
=
,則有 ( )
查看答案和解析>>