已知在R上可導(dǎo)的函數(shù)f(x)的圖象如圖所示,則不等式f(x)•f′(x)<0的解集為( )

A.(-2,0)
B.(-∞,-2)∪(-1,0)
C.(-∞,-2)∪(0,+∞)
D.(-2,-1)∪(0,+∞)
【答案】分析:函數(shù)y=f(x)(x∈R)的圖象得函數(shù)的單調(diào)性,根據(jù)單調(diào)性與導(dǎo)數(shù)的關(guān)系得導(dǎo)數(shù)的符號(hào),得不等式f(x)f′(x)<0的解集
解答:解:由f(x)圖象單調(diào)性可得f′(x)在(-∞,-1)∪(0,+∞)大于0,
在(-1,0)上小于0,
∴f(x)f′(x)<0的解集為(-∞,-2)∪(-1,0).
故選B.
點(diǎn)評(píng):考查識(shí)圖能力,利用導(dǎo)數(shù)求函數(shù)的單調(diào)性是重點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知在R上可導(dǎo)的函數(shù)f(x)的圖象如圖所示,則不等式f(x)•f′(x)<0的解集為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)在R上可導(dǎo),函數(shù)F(x)=f(x2-4)+f(4-x2)給出以下四個(gè)命題:(1)F(0)=0(2)F′(±2)=0(3)F′(0)=0(4)F′(x)的圖象關(guān)于原點(diǎn)對(duì)稱,其中正確的命題序號(hào)有
(2)(3)(4)
(2)(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:黑龍江省2012屆高二下學(xué)期期末考試數(shù)學(xué)(文) 題型:填空題

13.已知函數(shù)在R上可導(dǎo),函數(shù)給出以下四個(gè)命題:

(1)  (2)  (3)  (4)的圖象關(guān)于原點(diǎn)對(duì)稱,其中正確的命題序號(hào)有__________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)在R上可導(dǎo),函數(shù)F(x)=f(x2-4)+f(4-x2)給出以下四個(gè)命題:(1)F(0)=0(2)F′(±2)=0(3)F′(0)=0(4)F′(x)的圖象關(guān)于原點(diǎn)對(duì)稱,其中正確的命題序號(hào)有________.

查看答案和解析>>

同步練習(xí)冊(cè)答案