【題目】設(shè)橢圓C的兩個焦點(diǎn)是F1、F2 , 過F1的直線與橢圓C交于P、Q,若|PF2|=|F1F2|,且5|PF1|=6|F1Q|,則橢圓的離心率為( )
A.
B.
C.
D.
【答案】D
【解析】解:設(shè)橢圓 (a>b>0),
F1(﹣c,0),F(xiàn)2(c,0),
5|PF1|=6|F1Q|,設(shè)|PF1|=6m,
|F1Q|=5m,
由橢圓的定義可得|QF2|=2a﹣|QF1|=2a﹣5m,
|PF2|=|F1F2|=2c,可得2c=2a﹣6m.
即a﹣c=3m,①
取PF1的中點(diǎn)K,連接KF2,則KF2⊥PQ,
由勾股定理可得|PF2|2﹣|PK|2=|QF2|2﹣|QK|2,
即為4c2﹣9m2=(2a﹣5m)2﹣64m2,
化簡即為2a2﹣2c2=10am+15m2= ,可得:6a+6c=15a﹣5c
即9a=11c則離心率e= = .
所以答案是:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如下圖,某地一天從6時(shí)到14時(shí)的溫度變化曲線近似滿足函數(shù)y=Asin(ωx+φ)+b. (0 <φ < π)
(1)求這段時(shí)間的最大溫差;
(2)寫出這段曲線的函數(shù)解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知, ,函數(shù).
(1)求在區(qū)間上的最大值和最小值;
(2)若, ,求的值;
(3)若函數(shù)在區(qū)間上是單調(diào)遞增函數(shù),求正數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是偶函數(shù), (其中).
(1)求函數(shù)的定義域;
(2)求的值;
(3)若函數(shù)與的圖象有且只有一個交點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面有命題:
①y=|sinx-|的周期是2π;
②y=sinx+sin|x|的值域是[0,2] ;
③方程cosx=lgx有三解;
④為正實(shí)數(shù),在上遞增,那么的取值范圍是;
⑤在y=3sin(2x+)中,若f(x)=f(x2)=0,則x1-x2必為的整數(shù)倍;
⑥若A、B是銳角△ABC的兩個內(nèi)角,則點(diǎn)P(cosB-sinA,sinB-cosA)在第二象限;
⑦在中,若,則鈍角三角形。
其中真命題個數(shù)為( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的頂點(diǎn)A(6,1),AB邊上的中線CM所在直線方程為2x﹣y﹣7=0,AC邊上的高BH所在直線方程為x﹣2y﹣6=0.
(1)求點(diǎn)C的坐標(biāo);
(2)求直線BC的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)是定義在實(shí)數(shù)集上的奇函數(shù),并且在區(qū)間上是單調(diào)遞增的函數(shù).
(1)研究并證明函數(shù)在區(qū)間上的單調(diào)性;
(2)若實(shí)數(shù)滿足不等式,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為奇函數(shù),且實(shí)數(shù)。
(1)求的值;
(2)判斷函數(shù)在的單調(diào)性,并寫出證明過程;
(3)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形的中線與中位線相交于,已知是繞旋轉(zhuǎn)過程中的一個圖形,給出以下四個命題:①平面;②平面平面;③動點(diǎn)在平面上的射影在線段上;④異面直線與不可能垂直. 其中正確命題的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com