已知函數(shù)f(x)=是奇函數(shù),且f(2)=
(1)求實(shí)數(shù)m,n的值;
(2)判斷f(x)在(﹣∞,﹣1)的單調(diào)性,并加以證明.
(1)解:因?yàn)閒(x)奇函數(shù).
所以有f(﹣x)=﹣f(x)

∴3x+n=3x﹣n
∵n=0∴
∴m=2∴m=2  n=0
(2)f(x)=在(﹣∞,﹣1)上為增函數(shù).
證明:設(shè)x1,x2∈(﹣∞,﹣1)且x1<x2
則f(x1)﹣f(x2)=
=
=
∵x1<x2<﹣1
∴x1x2>1,x1﹣x2<0
<0
∴f(x1)﹣f(x2)<0
所以f(x)在(﹣∞,﹣1)的單調(diào)增函數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

13、已知函數(shù)f(x+1)是奇函數(shù),則函數(shù)f(x-1)的圖象關(guān)于
(2,0)
對(duì)稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x+1)是偶函數(shù),當(dāng)x2>x1>1時(shí),[f(x2)-f(x1)]( x2-x1)>0恒成立,設(shè)a=f (-
1
2
),b=f(2),c=f(3),則a,b,c的大小關(guān)系為( 。
A、b<a<c
B、c<b<a
C、b<c<a
D、a<b<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f (x+1)是奇函數(shù),f (x-1)是偶函數(shù),且f (0)=2,則f (2012)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x+1)是偶函數(shù),當(dāng)1<x1<x2時(shí),
f(x2)-f(x1)
x2-x1
>0
恒成立,設(shè)a=f(-
1
2
),b=f(2),c=f(3),則a,b,c的大小關(guān)系為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x+1)是偶函數(shù),當(dāng)x2>x1>1時(shí),[f(x2)-f(x1)](x2-x1)>0恒成立,設(shè)a=f(-
12
),b=f(2),c=f(3)
,則a,b,c的大小關(guān)系為(按從小到大)
b<a<c
b<a<c

查看答案和解析>>

同步練習(xí)冊(cè)答案