2.已知函數(shù)$f(x)=2{cos^2}x+sin({\frac{7π}{6}-2x})-1({x∈R})$.
(1)求函數(shù)f(x)的周期及單調(diào)遞增區(qū)間;
(2)在△ABC中,三內(nèi)角A,B,C的對邊分別為a,b,c,已知函數(shù)f(x)的圖象經(jīng)過點$({A,\frac{1}{2}})$,若b+c=2a,且$\overrightarrow{AB}•\overrightarrow{AC}$=6,求a的值.

分析 (1)由三角函數(shù)公式化簡可得f(x)=sin(2x+$\frac{π}{6}$),易得周期,解不等式2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$可得單調(diào)遞增區(qū)間;
(2)由(1)和A∈(0,π)可得A=$\frac{π}{3}$,再由向量式可得bc=12,結(jié)合余弦定理可得.

解答 解:(1)由三角函數(shù)公式化簡可得f(x)=2cos2x-1+sin($\frac{7π}{6}$-2x)
=cos2x-$\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$sin2x=$\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$sin2x=sin(2x+$\frac{π}{6}$),
∴函數(shù)f(x)的最小正周期T=$\frac{2π}{2}$=π,
由2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$可得kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$
∴函數(shù)f(x)的單調(diào)遞增區(qū)間為[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z);
(2)由f(A)=sin(2A+$\frac{π}{6}$)=$\frac{1}{2}$可得2A+$\frac{π}{6}$=2kπ+$\frac{π}{6}$或2A+$\frac{π}{6}$=2kπ+$\frac{5π}{6}$(k∈Z),
由A∈(0,π)可得A=$\frac{π}{3}$,又$\overrightarrow{AB}•\overrightarrow{AC}$=bccosA=$\frac{1}{2}$bc=6,∴bc=12,
∴cosA=$\frac{1}{2}$=$\frac{(b+c)^{2}-{a}^{2}}{2bc}$-1=$\frac{{a}^{2}}{8}$-1,解得a=2$\sqrt{3}$

點評 本題考查兩角和與差的三角函數(shù)公式,涉及三角函數(shù)的單調(diào)性和三角形的解法,屬中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

12.${[(1-\sqrt{2}){\;}^2]^{\frac{1}{2}}}$=$\sqrt{2}$-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知集合A={x|x≤3,x∈R},B={x|x-1≥0,x∈N},則A∩B=(  )
A.{0,1}B.{0,1,2}C.{2,3}D.{1,2,3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知函數(shù)f(x)滿足:①定義域為R;②對任意x∈R,f(x+2)=2f(x);③當x∈[-1,1]時,f(x)=$\sqrt{1-{x^2}}$,若函數(shù)g(x)=$\left\{\begin{array}{l}{e^x}({x≤0})\\ lnx({x>0})\end{array}$,則函數(shù)y=f(x)-g(x)在區(qū)間[-4,4]上零點有8 個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知二次函數(shù)h(x)=ax2+bx+2,其導函數(shù)y=h′(x)的圖象如圖,f(x)=6lnx+h(x).
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)f(x)在區(qū)間$({1,m+\frac{1}{2}})$上是單調(diào)函數(shù),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{bx}{a{x}^{2}+c}$,f′(0)=9,其中a>0,b,c∈R,且b+c=10.
(1)求b,c的值及函數(shù)f(x)的單調(diào)區(qū)間;
(2)若0<a≤1,求證:當x>1時,(x3+1)f(x)>9+lnx.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知直線l:mx-y=4,若直線l與直線x-(m+1)y=1垂直,則m的值為-$\frac{1}{2}$; 若直線l被圓C:x2+y2-2y-8=0截得的弦長為4,則m的值為±2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=log3$\frac{x-1}{x+1}$,g(x)=-2ax+a+1,h(x)=f(x)+g(x).
(Ⅰ)當a=-1時,證明h(x)是奇函數(shù);
(Ⅱ)若關(guān)于x的方程f(x)=log3g(x)有兩個不等實數(shù)根,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知正三棱錐底面的邊長是$\frac{15}{2}$,高與側(cè)棱的夾角為60°,求它的側(cè)面積和表面積.

查看答案和解析>>

同步練習冊答案